Respuesta :
For a segment AB, the coordinates of the middle point C are:
xc=(xa+xb)/2,
yc=(ya+yb)/2.
Now, you know points A and C. Thus we get:
xb=2×xc-xa
yb=2×yc-ya
With numerical values:
xb=2×2-(-1)=4+1=5
yb=2×3-(-5)=6+5=11
Answer: B(5, 11)
The midpoint of a line segment divides the line into equal parts.
The coordinates of B is (5,11)
The given parameters are:
[tex]\mathbf{A = (-1.-5)}[/tex]
[tex]\mathbf{C = (2.3)}[/tex] --- the midpoint
The midpoint of a segment is calculated as:
[tex]\mathbf{C = \frac{1}{2}(x_1 + x_2,y_1+y_2)}[/tex]
So, we have:
[tex]\mathbf{(2,3) = \frac{1}{2}(-1 + x,-5+y)}[/tex]
Multiply through by 2
[tex]\mathbf{(4,6) = (-1 + x,-5+y)}[/tex]
By comparison:
[tex]\mathbf{-1 + x =4}[/tex]
[tex]\mathbf{-5+ y =6}[/tex]
So, we have:
[tex]\mathbf{-1 + x =4}[/tex]
[tex]\mathbf{x = 4 + 1}[/tex]
[tex]\mathbf{x = 5}[/tex]
[tex]\mathbf{-5+ y =6}[/tex]
[tex]\mathbf{y = 6 + 5}[/tex]
[tex]\mathbf{y = 11}[/tex]
Hence, the coordinates of B is (5,11)
Read more about midpoints at:
https://brainly.com/question/13133371