Answer:
Part 1) 15 cubic inches
Part 2) [tex]26.25\ in^3[/tex] or [tex]26\frac{1}{4}\ in^3[/tex]
Step-by-step explanation:
Part 1) A rectangular prism has a length of 3 inches, a width of 5 inches, and a height of 1 inches.
What is the volume of the prism?
we know that
The volume of the rectangular prism is equal to
[tex]V=LWH[/tex]
substitute the given values
[tex]V=(3)(5)(1)=15\ in^3[/tex]
Part 2)
A rectangular prism has a length of 3 1/2 inches, a width of 5 inches, and a height of 1 1/2 inches.
What is the volume of the prism?
we know that
The volume of the rectangular prism is equal to
[tex]V=LWH[/tex]
we have
[tex]L=3\frac{1}{2}= 3+\frac{1}{2}=\frac{7}{2}\ in[/tex]
[tex]W=5\ in[/tex]
[tex]H=1\frac{1}{2}= 1+\frac{1}{2}=\frac{3}{2}\ in[/tex]
substitute
[tex]V=(\frac{7}{2})(5)(\frac{3}{2})=\frac{105}{4}=26.25\ in^3[/tex]
Convert to mixed number
[tex]26.25\ in^3=26\frac{1}{4}\ in^3[/tex]