For the figures below, assume they are made of semicircles, quarter circles and squares. For each shape, find the area and perimeter. Give your answer as a completely simplified exact value in terms of π (no approximations).

For the figures below assume they are made of semicircles quarter circles and squares For each shape find the area and perimeter Give your answer as a completel class=

Respuesta :

Area of the shaded region [tex]$=36(\pi -2)[/tex] square cm

Perimeter of the shaded region [tex]=6 (\pi + 2\sqrt 2)[/tex] cm

Solution:

Radius of the quarter of circle = 12 cm

Area of the shaded region = Area of quarter of circle – Area of the triangle

                                             [tex]$=\frac{1}{4} \pi r^2 - \frac{1}{2} bh[/tex]

                                             [tex]$=\frac{1}{4} \pi \times 12^2 - \frac{1}{2} \times 12 \times 12[/tex]

                                             [tex]$=36\pi -72[/tex]

                                             [tex]$=36(\pi -2)[/tex] square cm.

Area of the shaded region [tex]$=36(\pi -2)[/tex] square cm

Using Pythagoras theorem,

[tex]AC^2=AB^2+BC^2[/tex]

[tex]AC^2=12^2+12^2[/tex]

[tex]AC^2=288[/tex]

Taking square root on both sides of the equation, we get

[tex]AC= 12\sqrt 2[/tex] cm

Perimeter of the quadrant of a circle = [tex]\frac{1}{4} \times 2\pi r[/tex]

                                                             [tex]$=\frac{1}{4} \times 2 \times \pi \times 12[/tex]

                                                             [tex]$=6 \pi[/tex] cm

Perimeter of the shaded region = [tex]6 \pi + 12\sqrt 2[/tex] cm

                                                    [tex]=6 (\pi + 2\sqrt 2)[/tex] cm

Hence area of the shaded region [tex]$=36(\pi -2)[/tex] square cm

Perimeter of the shaded region [tex]=6 (\pi + 2\sqrt 2)[/tex] cm