Respuesta :

Answer :

WX=3.6 units

m<W=[tex]{56.3}^{0} [/tex]

m<X=[tex]{33.7}^{0} [/tex]

Step-by-step explanation:

We can calculate WX

using the Pythagorean theorem.

From the theorem !

[tex] { |WX|}^{2} ={ |WY|}^{2}+{|XY|}^{2} [/tex]

From the question,WY=2 units and

XY=3 units.

Thus,by substitution we obtain

[tex] { |WX|}^{2} ={2}^{2}+{3}^{2} [/tex]

We then simplify the right hand side of the equation

[tex]{ |WX|}^{2} =4 + 9[/tex]

[tex] \implies { |WX|}^{2} =13[/tex]

we then take the positive square root of both sides

[tex]\implies \sqrt|WX| = \sqrt{13} [/tex]

[tex]\implies |WX| = 3.6 [/tex]

We can use the tan ratio to find for the angles.

[tex] \tan(\theta) = \frac{opposite}{adjacent }[/tex]

To continue,

Let m<W=a

This implies that

[tex] \tan(a) = \frac{3}{2} [/tex]

[tex] \implies(a) = { \tan }^{ - 1} (\frac{3}{2})[/tex]

[tex]\implies(a) = {56.3}^{0} [/tex]

Let m<M=b

[tex] \tan(b) = \frac{2}{3} [/tex]

[tex] \implies(b) = { \tan }^{ - 1} (\frac{2}{3})[/tex]

[tex]\implies(b) = {33.7}^{0} [/tex]

Hence

m<W=[tex]{56.3}^{0} [/tex]

m<X=[tex]{33.7}^{0} [/tex]