How do you solve this problem?

Answer:
[tex]V_2 = 24V, \\V_3 = 24V \\I _2 =4A\\I_3 = 2A\\I_1 = 6A\\R_1 = 1\Omega\\R_t = 5\Omega[/tex]
Explanation:
The principle of continuity of current demands that
[tex]I_1 = I_2+I_3[/tex].
And applying Kirchhoff's current law two two loops in the circuit, we get:
(1). [tex]30V -I_1R_1 - I_2R_2 = 0[/tex]
and
(2). [tex]I_3R_3 -I_2R_2 = 0[/tex].
Since [tex]I_1R_1 = 6V[/tex], equation (1) becomes
[tex]30V -6V - I_2R_2 = 0[/tex]
[tex]\boxed{ 24V = I_2R_2}[/tex]
Since [tex]R_2 = 6\Omega[/tex]
[tex]I_2 = \dfrac{24V}{6\Omega }[/tex]
[tex]\boxed{I_2 = 4A}[/tex]
From equation (2) we now get:
[tex]I_3R_3 = I_2R_2[/tex]
[tex]I_3 = \dfrac{I_2R_2}{R_3}[/tex]
[tex]I_3 = \dfrac{6 A* 4\Omega}{12\Omega}[/tex]
[tex]\boxed{ I_3 = 2A.}[/tex]
Finally, we solve for [tex]I_1[/tex]
[tex]I _1 = I_2+I_3[/tex]
[tex]I_1 = 4A+2A[/tex]
[tex]\boxed{ I_1 = 6A}[/tex]
therefore, the resistance [tex]R_1[/tex] is
[tex]R_1 = \dfrac{6V}{6A} \\\\\boxed{ R_1 = 1\Omega}[/tex]
The potential drop [tex]V_2[/tex] is
[tex]V_2 = I_2 R_2 \\\\V_2 = 4A*6\Omega\\\\\boxed{ V_2 = 24V. }[/tex]
Similarly, the potential drop [tex]V_3[/tex] is
[tex]V_3 = I_3R_3 \\\\V_3 = 2A* 12\Omega\\\\\boxed{ V_3 = 24V}[/tex]
The total resistance of the circuit is [tex]R_t[/tex]
[tex]R_t = R_1 +R_p[/tex]
where
[tex]$\frac{1}{R_p} = \frac{1}{R_2}+\frac{1}{R_3} $[/tex]
[tex]R_p = 4\Omega[/tex];
therefore,
[tex]R_t = 1\Omega+4\Omega[/tex]
[tex]\boxed{ r_t =5\Omega.}[/tex]