Respuesta :
Explanation:
The radius, velocity, and force vectors are:
r = (3.0 m) i + (8.0 m) j
v = (5.0 m/s) i − (6.0 m/s) j
F = (-7.0 N) i
Angular momentum is the cross product of the radius vector and the linear momentum vector:
L = r × p
L = r × (mv)
L = <(3.0 m) i + (8.0 m) j> × <(15 kg m/s) i + (-18 kg m/s) j>
L = (-174 kg m²/s) k
Torque is the cross product of the radius vector and the force vector:
τ = r × F
τ = <(3.0 m) i + (8.0 m) j> × <(-7.0 N) i + (0 N) j>
τ = (56 Nm) k
Rate of change of angular momentum is equal to the torque.
L' = τ
L' = (56 Nm) k
a) The angular momentum of the particle is [tex]\vec L = -174\,\hat{k}\,\left[\frac{kg\cdot m}{s} \right][/tex].
b) The torque acting on the particle is [tex]\vec {\tau} = -56\,\hat{k}\,[N \cdot m][/tex].
c) The rate at which the angular momentum is changing is [tex]\vec {\tau} = -56\,\hat{k}\,[N \cdot m][/tex].
a) The angular momentum of the particle ([tex]\vec L[/tex]), in kilograms-meter per second, is given by the following vectorial formula:
[tex]\vec L = \vec r \,\times\, m\cdot \vec v[/tex] (1)
Where:
- [tex]\vec r[/tex] - Distance with respect to the origin, in meters.
- [tex]m[/tex] - Mass, in kilograms.
- [tex]\vec v[/tex] - Velocity, in meters per second.
If we know that [tex]\vec r = (3\,m, 8\,m, 0\,m)[/tex], [tex]m = 3\,kg[/tex] and [tex]\vec v = \left(5\,\frac{m}{s}, -6\,\frac{m}{s}, 0\,\frac{m}{s} \right)[/tex], then the angular momentum of the particle is determined by determinants:
[tex]\vec L = (3\,kg)\cdot \left|\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\3\,m&8\,m&0\,m\\5\,\frac{m}{s} &-6\,\frac{m}{s} &0\,\frac{m}{s} \end{array}\right|[/tex]
[tex]\vec L = (3\,kg)\cdot \left[(3\,m)\cdot \left(-6\,\frac{m}{s} \right)-(8\,m)\cdot \left(5\,\frac{m}{s} \right)\right]\cdot \hat{k}[/tex]
[tex]\vec L = -174\,\hat{k}\,\left[\frac{kg\cdot m}{s} \right][/tex]
The angular momentum of the particle is [tex]\vec L = -174\,\hat{k}\,\left[\frac{kg\cdot m}{s} \right][/tex].
b) The torque ([tex]\vec \tau[/tex]), in newton-meters, acting on the particle is defined by the following expression:
[tex]\vec {\tau} = \vec {r}\,\times\,\vec {F}[/tex] (2)
Where [tex]\vec F[/tex] is the force, in newtons, acting on the particle.
If we know that [tex]\vec r = (3\,m, 8\,m, 0\,m)[/tex] and [tex]\vec F = (-7\,N, 0\,N, 0\,N)[/tex], then the torque experimented by the particle is determined by determinants:
[tex]\vec {\tau} = \left|\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\3&8&0\\-7&0&0\end{array}\right| \,[N\cdot m][/tex]
[tex]\vec {\tau} = -56\,\hat{k}\,[N \cdot m][/tex]
The torque acting on the particle is [tex]\vec {\tau} = -56\,\hat{k}\,[N \cdot m][/tex].
c) The rate at which the angular momentum changes in time is found deriving (1):
[tex]\vec {\dot L} = \vec {v} \,\times \,m\cdot \vec {v} + \vec {r}\,\times\,m\cdot \vec {a}[/tex]
[tex]\vec{\dot {L}} = \vec O + \vec r \,\times \,\vec F[/tex]
[tex]\vec {\dot L} = \vec r \,\times \,\vec F[/tex]
[tex]\vec {\dot L} = \vec{\tau}[/tex] (3)
In other words, the rate of a constant mass system at which the angular momentum changes is equal to the torque experimented by the particle. Hence, the rate at which the angular momentum changes is [tex]\vec {\tau} = -56\,\hat{k}\,[N \cdot m][/tex].
The rate at which the angular momentum is changing is [tex]\vec {\tau} = -56\,\hat{k}\,[N \cdot m][/tex].
We kindly invite to check this question on torque: https://brainly.com/question/1233416