Answer:
a) [tex]V=759.8727\ ft^3[/tex]
b) [tex]\dot V=1.403\times 10^{-3}\ ft^3.s^{-1}[/tex]
c) [tex]t\approx29.541\ s[/tex]
Explanation:
Given:
a)
Now, volume of turpentine spilled:
[tex]V=A.(h_i-h_f)[/tex]
where:
[tex]A=[/tex] area of the cross section of the tank's volume
[tex]V=\pi .\frac{d^2}{4} \times(h_i-h_f)[/tex]
[tex]V=\pi\times\frac{15^2}{4} \times(17.3-13)[/tex]
[tex]V=759.8727\ ft^3[/tex]
b)
When the tank was full the liquid level was highest:
so velocity form the height of the hole will be given as:
[tex]v=\sqrt{2g.(h_i-h')}[/tex]
[tex]v=\sqrt{2\times 32.12\times (17.3-7) }[/tex]
[tex]v=25.722\ ft.s^{-1}[/tex]
Now we have the flow rate of the spillage given by:
[tex]\dot V=(\pi.\frac{d'^2}{4}) \times v[/tex]
[tex]\dot V=\pi\times \frac{(\frac{1}{120})^2 }{4} \times 25.722[/tex]
[tex]\dot V=1.403\times 10^{-3}\ ft^3.s^{-1}[/tex]
c)
Total time the leak was active can be calculated as:
[tex]t=\frac{V}{\dot V}[/tex]
[tex]t=\frac{759.8727}{25.722}[/tex]
[tex]t\approx29.541\ s[/tex]