Because of staffing decisions, managers of the Gibson-Marimont Hotel are interested in
the variability in the number of rooms occupied per day during a particular season of the
year. A sample of 20 days of operation shows a sample mean of 290 rooms occupied per
day and a sample standard deviation of 30 rooms.
a. What is the point estimate of the population variance?
b. Provide a 90% confidence interval estimate of the population variance.
c. Provide a 90% confidence interval estimate of the population standard deviation.

Respuesta :

Answer:

(a) 900

(b) [567.35 , 1689.72]

(c) [23.82 , 41.11]

Step-by-step explanation:

We are given that a sample of 20 days of operation shows a sample mean of 290 rooms occupied per  day and a sample standard deviation of 30 rooms i.e.;

Sample mean, [tex]xbar[/tex] = 290      Sample standard deviation, s = 30  and  Sample size, n = 20

(a) Point estimate of the population variance is equal to sample variance, which is the square of Sample standard deviation ;

                         [tex]\sigma^{2}[/tex]  =  [tex]s^{2}[/tex] = [tex]30^{2}[/tex]

                          [tex]\sigma^{2}[/tex]  = 900

(b) 90% confidence interval estimate of the population variance is given by the pivotal quantity of  [tex]\frac{(n-1)s^{2} }{\sigma^{2} }[/tex] ~ [tex]\chi^{2} __n_-_1[/tex]

P(10.12 < [tex]\chi^{2}__1_9[/tex] < 30.14) = 0.90 {At 10% significance level chi square has critical

                                           values of 10.12 and 30.14 at 19 degree of freedom}        

P(10.12 < [tex]\frac{(n-1)s^{2} }{\sigma^{2} }[/tex] < 30.14) = 0.90

P([tex]\frac{10.12}{(n-1)s^{2} }[/tex] < [tex]\frac{1 }{\sigma^{2} }[/tex] < [tex]\frac{30.14}{(n-1)s^{2} }[/tex] ) = 0.90

P([tex]\frac{(n-1)s^{2} }{30.14}[/tex] < [tex]\sigma^{2}[/tex] < [tex]\frac{(n-1)s^{2} }{10.12}[/tex] ) = 0.90

90% confidence interval for [tex]\sigma^{2}[/tex] = [tex][\frac{19s^{2} }{30.14} , \frac{19s^{2} }{10.12}][/tex]

                                                   = [tex][\frac{19*900 }{30.14} , \frac{19*900 }{10.12}][/tex]

                                                   = [567.35 , 1689.72]

Therefore, 90% confidence interval estimate of the population variance is [567.35 , 1689.72] .

(c) 90% confidence interval estimate of the population standard deviation is given by ;

       P([tex]\sqrt{\frac{(n-1)s^{2} }{30.14}}[/tex] < [tex]\sigma[/tex] < [tex]\sqrt{\frac{(n-1)s^{2} }{10.12}}[/tex] ) = 0.90

90% confidence interval for [tex]\sigma[/tex] = [tex][\sqrt{\frac{19s^{2} }{30.14}} , \sqrt{\frac{19s^{2} }{10.12}} ][/tex]

                                                 = [23.82 , 41.11]

Therefore, 90% confidence interval estimate of the population standard deviation is [23.82 , 41.11] .

ACCESS MORE