Answer:
a) [tex] R= 2.5 X_1 +2.45 X_2 + 2.5 X_3[/tex]
And the expected value for R is given by:
[tex] E(R) = 2.5 E(X_1) + 2.45 E(X_2) + 2.5 E(X_3) =2.5*1500 + 2.45*500 + 2.5*300=5725[/tex]
b) We have that [tex] Cov (X_i, X_j) =0 , i,j =1,2,3[/tex] since are independent
First we need to find the Variance like this:
[tex] Var(R) = Var(X_1) +Var(X_2)+Var(X_3)[/tex]
And replacing we have this:
[tex] Var(R) = Var(2.5 X_1) +Var(2.45 X_2)+ Var(2.5 X_3)[/tex]
And using properties of variance w ehave this:
[tex] Var(R) = 2.5^2 Var(X_1) + 2.45^2 Var(X_2) + 2.5^2 Var(X_3) = 2.5^2 *180^2 + 2.45^2 *90^2 + 2.5^5 *40^2 =261120.25[/tex]
And the deviation would be:
[tex] Sd(R)= \sqrt{261120.25}= 510.999[/tex]
Step-by-step explanation:
We have the following info:
[tex] X_1 \sim N (\mu_1 = 1500, \sigma_1 =180)[/tex]
[tex] X_2 \sim N (\mu_2 = 500, \sigma_2 =90)[/tex]
[tex] X_3 \sim N (\mu_3 = 300, \sigma_3 =40)[/tex]
Assuming the following questions:
a) Find the mean daily revenue
Based on the info given the daily revenue is given by:
[tex] R= 2.5 X_1 +2.45 X_2 + 2.5 X_3[/tex]
And the expected value for R is given by:
[tex] E(R) = 2.5 E(X_1) + 2.45 E(X_2) + 2.5 E(X_3) =2.5*1500 + 2.45*500 + 2.5*300=5725[/tex]
b) Assuming that X1, X2 and X3 to be independent find the standard deviation for the daily revenue
We have that [tex] Cov (X_i, X_j) =0 , i,j =1,2,3[/tex] since are independent
First we need to find the Variance like this:
[tex] Var(R) = Var(X_1) +Var(X_2)+Var(X_3)[/tex]
And replacing we have this:
[tex] Var(R) = Var(2.5 X_1) +Var(2.45 X_2)+ Var(2.5 X_3)[/tex]
And using properties of variance w ehave this:
[tex] Var(R) = 2.5^2 Var(X_1) + 2.45^2 Var(X_2) + 2.5^2 Var(X_3) = 2.5^2 *180^2 + 2.45^2 *90^2 + 2.5^5 *40^2 =261120.25[/tex]
And the deviation would be:
[tex] Sd(R)= \sqrt{261120.25}= 510.999[/tex]