Calculate the equilibrium number of vacancies per cubic meter for copper at 1000K. The energy for vacancy formation is 0.9eV/atom; the atomic weight and density at 1000K for copper are 63.5g/mol and 8.45g/cm3, respectively.

Respuesta :

Answer:

Therefore the equilibrium number of vacancies per unit cubic meter =2.34×10²⁴ vacancies/ mole

Explanation:

The equilibrium number of of vacancies is denoted by [tex]N_v[/tex].

It is depends on

  • total no. of atomic number(N)
  • energy required for vacancy
  • Boltzmann's constant (k)= 8.62×10⁻⁵ev K⁻¹
  • temperature (T).

[tex]N_v=Ne^{-\frac{Q_v}{kT} }[/tex]

To find  equilibrium number of of vacancies we have find N.

[tex]N=\frac{N_A\ \rho}{A_{cu}}[/tex]

Here ρ= 8.45 g/cm³  =8.45 ×10⁶m³

[tex]N_A[/tex]= Avogadro Number = 6.023×10²³

[tex]A_{Cu}[/tex]= 63.5 g/mole

[tex]N=\frac{6.023\times 10^{23}\times 8.45\times 10^{6}}{63.5}[/tex]

   [tex]=8.01\times 10^{28[/tex] g/mole

Here [tex]Q_v[/tex]=0.9 ev/atom , T= 1000k

Therefore the equilibrium number of vacancies per unit cubic meter,

[tex]N_v=( 8.01\times 10^{28}) e^{-(\frac{0.9}{8.62\times10^{-5}\times 1000})[/tex]

   =2.34×10²⁴ vacancies/ mole

Lanuel

The equilibrium number of vacancies per cubic meter for copper at 1000K is equal to [tex]2.34 \times 10^{24}\;vacancies/m^3[/tex]

Given the following data:

  • Temperature = 1000 K.
  • Energy = 0.9 eV/atom.
  • Atomic weight of copper at 1000K = 63.5 g/mol.
  • Density of copper at 1000K = 8.45 [tex]g/cm^3[/tex].

Scientific data:

  • Avogadro's number = [tex]6.02 \times 10^{23}[/tex]
  • Boltzmann's constant, k = [tex]8.62 \times 10^{-5}\;eV/K[/tex]

How to calculate the equilibrium number of vacancies.

First of all, we would determine the number of atomic sites per cubic meter (N) for copper by using this formula:

[tex]N=\frac{N_A\rho}{A_{cu}} \\\\N=\frac{6.02 \times 10^{23} \times 8.45 \times 10^6}{63.5}[/tex]

N = [tex]8.0 \times 10^{28}\;atoms/m^3[/tex]

Now, we can calculate the number of vacancies as follows:

[tex]N_v = Nexp({-\frac{E}{kT} })\\\\N_v = 8.0 \times 10^{28}\times e(-\frac{0.9}{8.62 \times 10^{-5} \times 1000}) \\\\N_v = 8.0 \times 10^{28}\times e(-10.441)\\\\N_v = 8.0 \times 10^{28}\times 2.92 \times 10^{-5}\\\\N_v =2.34 \times 10^{24}\;vacancies/m^3[/tex]

Read more on vacancy formation here: https://brainly.com/question/13622505

ACCESS MORE
EDU ACCESS
Universidad de Mexico