1) [tex][m^3\cdot kg^{-1}\cdot s^{-2}][/tex]
2) [tex][kg\cdot m^2 \cdot s^{-2}][/tex]
Explanation:
1)
The magnitude of the gravitational force is given by
[tex]F=\frac{G m_1 m_2}{r^2}[/tex]
where
F is the force
G is the gravitational constant
m1, m2 are the two masses
r is the distance between the two masses
The SI units used for the various quantities are:
Force: Newton [N], equivalent to [tex][kg \cdot m\cdot s^{-2}][/tex]
Mass: kilogram [kg]
Distance: meter [m]
If we re-arrange the equation making G the subject,
[tex]G=\frac{Fr^2}{m_1m_2}[/tex]
And substituting the units, we find the units of G:
[tex][G]=\frac{[kg\cdot m \cdot s^{-2}][m]^2}{[kg][kg]}=\frac{[m^3]}{[kg][s^2]}=[m^3\cdot kg^{-1}\cdot s^{-2}][/tex]
2)
The mass-energy relationship from Einstein's equivalence is
[tex]E=mc^2[/tex]
where
E is the energy
m is the mass
c is the speed of light
The SI units for the various quantities are:
mass: kilogram [kg]
speed: meters per second, [tex][m\cdot s^{-1}][/tex]
Therefore, the SI units for the energy must be:
[tex][E]=[kg]\cdot [m\cdot s^{-1}]^2 =[kg]\cdot [m]^2 \cdot [s^{-2}]=[kg\cdot m^2 \cdot s^{-2}][/tex]