Answer: The volume of NaOH solution required to reach the half-equivalence point is 0.09 mL
Explanation:
The chemical equation for the dissociation of butanoic acid follows:
[tex]CH_3CH_2CH_2COOH\rightleftharpoons CH_3CH_2CH_2COO^-+H^+[/tex]
The expression of [tex]K_a[/tex] for above equation follows:
[tex]K_a=\frac{[CH_3CH_2CH_2COO^-][H^+]}{[CH_3CH_2CH_2COOH]}[/tex]
We are given:
[tex][CH_3CH_2CH_2COOH]=0.888M\\K_a=1.54\times 10^{-5}[/tex]
[tex][CH_3CH_2CH_2COO^-]=[H^+][/tex]
Putting values in above expression, we get:
[tex]1.54\times 10^{-5}=\frac{[H^+]^2}{0.888}[/tex]
[tex][H^+]=-0.0037,0.0037[/tex]
Neglecting the negative value because concentration cannot be negative
To calculate the volume of base, we use the equation given by neutralization reaction:
[tex]n_1M_1V_1=n_2M_2V_2[/tex]
where,
[tex]n_1,M_1\text{ and }V_1[/tex] are the n-factor, molarity and volume of acid which is butanoic acid
[tex]n_2,M_2\text{ and }V_2[/tex] are the n-factor, molarity and volume of base which is NaOH.
We are given:
[tex]n_1=1\\M_1=\frac{0.0037}{2}M\text{ (half equivalence)}\\V_1=20.00mL\\n_2=1\\M_2=0.425M\\V_2=?mL[/tex]
Putting values in above equation, we get:
[tex]1\times \frac{0.0037}{2}\times 20.00=1\times 0.425\times V_2\\\\V_2=\frac{1\times 0.0037\times 20}{1\times 0.425\times 2}=0.087mL[/tex]
Hence, the volume of NaOH solution required to reach the half-equivalence point is 0.09 mL