Answer:
[tex]P(t) = P_{0}exp^{(k_{1}-k_{2})t\\[/tex]
Step-by-step explanation:
[tex]\frac{dP}{dt}= \frac{dB}{dt}-\frac{dD}{dt}\\where \frac{dB}{dt}=k_{1}P ; and \frac{dD}{dt}=k_{2}P\\ Therefore:\\\frac{dP}{dt}=k_{1}P-k_{2}P\\\frac{dP}{dt}=(k_{1}-k_{2})P\\[/tex]
This leads to:
[tex]\frac{dP}{P}=(k_{1}-k_{2})dt\\[/tex]
Taking the integral of both sides
[tex]\int {\frac{dP}{P}=\int(k_{1}-k_{2})dt} \\ln P = (k_{1}-k_{2})t+C, C=constant of integration[/tex]......(i)
[tex]P(t) = Cexp^{(k_{1}-k_{2})t\\[/tex]
When t=0, P(t)=[tex]P_{0}[/tex]
From (i), [tex]P_{0} = C\\[/tex]
Therefore: [tex]P(t) = P_{0}exp^{(k_{1}-k_{2})t\\[/tex]