Answer:
Therefore the concentration of salt in the incoming brine is 1.73 g/L.
Step-by-step explanation:
Here the amount of incoming and outgoing of water are equal. Then the amount of water in the tank remain same = 10 liters.
Let the concentration of salt be a gram/L
Let the amount salt in the tank at any time t be Q(t).
[tex]\frac{dQ}{dt} =\textrm {incoming rate - outgoing rate}[/tex]
Incoming rate = (a g/L)×(1 L/min)
=a g/min
The concentration of salt in the tank at any time t is = [tex]\frac{Q(t)}{10}[/tex] g/L
Outgoing rate = [tex](\frac{Q(t)}{10} g/L)(1 L/ min)[/tex] [tex]\frac{Q(t)}{10} g/min[/tex]
[tex]\frac{dQ}{dt} = a- \frac{Q(t)}{10}[/tex]
[tex]\Rightarrow \frac{dQ}{10a-Q(t)} =\frac{1}{10} dt[/tex]
Integrating both sides
[tex]\Rightarrow \int \frac{dQ}{10a-Q(t)} =\int\frac{1}{10} dt[/tex]
[tex]\Rightarrow -log|10a-Q(t)|=\frac{1}{10} t +c[/tex] [ where c arbitrary constant]
Initial condition when t= 20 , Q(t)= 15 gram
[tex]\Rightarrow -log|10a-15|=\frac{1}{10}\times 20 +c[/tex]
[tex]\Rightarrow -log|10a-15|-2=c[/tex]
Therefore ,
[tex]-log|10a-Q(t)|=\frac{1}{10} t -log|10a-15|-2[/tex] .......(1)
In the starting time t=0 and Q(t)=0
Putting t=0 and Q(t)=0 in equation (1) we get
[tex]- log|10a|= -log|10a-15| -2[/tex]
[tex]\Rightarrow- log|10a|+log|10a-15|= -2[/tex]
[tex]\Rightarrow log|\frac{10a-15}{10a}|= -2[/tex]
[tex]\Rightarrow |\frac{10a-15}{10a}|=e ^{-2}[/tex]
[tex]\Rightarrow 1-\frac{15}{10a} =e^{-2}[/tex]
[tex]\Rightarrow \frac{15}{10a} =1-e^{-2}[/tex]
[tex]\Rightarrow \frac{3}{2a} =1-e^{-2}[/tex]
[tex]\Rightarrow2a= \frac{3}{1-e^{-2}}[/tex]
[tex]\Rightarrow a = 1.73[/tex]
Therefore the concentration of salt in the incoming brine is 1.73 g/L