Initially a tank contains 10 liters of pure water. Brine of unknown (but constant) concentration of salt is flowing in at 1 liter per minute. The water is mixed well and drained at 1 liter per minute. In 20 minutes there are 15 grams of salt in the tank. What is the concentration of salt in the incoming brine?

Respuesta :

Answer:

Therefore the concentration of salt in the incoming brine is 1.73 g/L.

Step-by-step explanation:

Here the amount of incoming and outgoing of water are equal. Then the amount of water in the tank remain same = 10 liters.

Let the concentration of salt  be a gram/L

Let the amount salt in the tank at any time t be Q(t).

[tex]\frac{dQ}{dt} =\textrm {incoming rate - outgoing rate}[/tex]

Incoming rate = (a g/L)×(1 L/min)

                       =a g/min

The concentration of salt in the tank at any time t is = [tex]\frac{Q(t)}{10}[/tex]  g/L

Outgoing rate = [tex](\frac{Q(t)}{10} g/L)(1 L/ min)[/tex] [tex]\frac{Q(t)}{10} g/min[/tex]

[tex]\frac{dQ}{dt} = a- \frac{Q(t)}{10}[/tex]

[tex]\Rightarrow \frac{dQ}{10a-Q(t)} =\frac{1}{10} dt[/tex]

Integrating both sides

[tex]\Rightarrow \int \frac{dQ}{10a-Q(t)} =\int\frac{1}{10} dt[/tex]

[tex]\Rightarrow -log|10a-Q(t)|=\frac{1}{10} t +c[/tex]        [ where c arbitrary constant]

Initial condition when t= 20 , Q(t)= 15 gram

[tex]\Rightarrow -log|10a-15|=\frac{1}{10}\times 20 +c[/tex]

[tex]\Rightarrow -log|10a-15|-2=c[/tex]

Therefore ,

[tex]-log|10a-Q(t)|=\frac{1}{10} t -log|10a-15|-2[/tex] .......(1)

In the starting time t=0 and Q(t)=0

Putting t=0 and Q(t)=0  in equation (1) we get

[tex]- log|10a|= -log|10a-15| -2[/tex]

[tex]\Rightarrow- log|10a|+log|10a-15|= -2[/tex]

[tex]\Rightarrow log|\frac{10a-15}{10a}|= -2[/tex]

[tex]\Rightarrow |\frac{10a-15}{10a}|=e ^{-2}[/tex]

[tex]\Rightarrow 1-\frac{15}{10a} =e^{-2}[/tex]

[tex]\Rightarrow \frac{15}{10a} =1-e^{-2}[/tex]

[tex]\Rightarrow \frac{3}{2a} =1-e^{-2}[/tex]

[tex]\Rightarrow2a= \frac{3}{1-e^{-2}}[/tex]

[tex]\Rightarrow a = 1.73[/tex]

Therefore the concentration of salt in the incoming brine is 1.73 g/L

ACCESS MORE
EDU ACCESS
Universidad de Mexico