Respuesta :
Answer:
The greatest number of bunches of bananas that Andrea can buy is 15 and the greatest number of boxes of raspberries that Andrea can buy is 21 to maintain the ratio 7:5
Step-by-step explanation:
Let
x ---->the greatest number of boxes of raspberries that Andrea can buy
y ---->the greatest number of bunches of bananas that Andrea can buy
we know that
[tex]100\%+8\%=106\%=108/100=1.08[/tex] ---> sales tax
[tex]\frac{x}{y} =\frac{7}{5}[/tex]
[tex]x=\frac{7}{5}y[/tex] ----> equation A
[tex]1.08[2.50x+3.00y]\leq 135[/tex] ----> inequality B
substitute equation A in the inequality B
[tex]1.08[2.50(\frac{7}{5}y)+3.00y]\leq 135[/tex]
solve for y
Multiply by 5 both sides to remove the fraction
[tex]18.9y+16.2y\leq 675[/tex]
[tex]35.1y\leq 675[/tex]
[tex]y\leq 19.23[/tex]
so
The maximum value of y is 19
Find the value of x
replace the value of y in equation A until you get an integer value that satisfies the ratio 7:5
For y=19
[tex]x=\frac{7}{5}(19)[/tex]
[tex]x=26.6[/tex]
For y=18
[tex]x=\frac{7}{5}(18)[/tex]
[tex]x=25.2[/tex]
For y=17
[tex]x=\frac{7}{5}(17)[/tex]
[tex]x=23.8[/tex]
For y=16
[tex]x=\frac{7}{5}(16)[/tex]
[tex]x=22.4[/tex]
For y=15
[tex]x=\frac{7}{5}(15)[/tex]
[tex]x=21[/tex]
therefore
The greatest number of of bunches of bananas that Andrea can buy is 15 and the greatest number of boxes of raspberries that Andrea can buy is 21 to maintain the ratio 7:5
Verify the inequality B
[tex]1.08[2.50(21)+3.00(15)]\leq 135[/tex]
[tex]1.08[52.5+45]\leq 135[/tex]
[tex]105.3\leq 135[/tex] ----> is true
Otras preguntas
