Answer:
[tex]a_{n} = 5n-9[/tex]
Step-by-step explanation:
we have the following sequence,
[tex]-4,1,6,11,16,...[/tex]
where
[tex]a_1=-4\\a_2=1\\a_3=6\\a_4=11\\a_5=16[/tex]
so
[tex]a_2-a_1=1-(-4)=5[/tex] -----> [tex]a_2=a_1+5[/tex]
[tex]a_3-a_2=6-1=5[/tex] -----> [tex]a_3=a_2+5[/tex]
[tex]a_4-a_3=11-6=5[/tex] -----> [tex]a_4=a_3+5[/tex]
[tex]a_5-a_4=16-116=5[/tex] -----> [tex]a_5=a_4+5[/tex]
Note there is a common difference d=5 between consecutive terms
This indicates the sequence is arithmetic with n th term
so
[tex]a_{n} = a₁ + (n - 1)d[/tex]
where a₁ is the first term and d the common difference
substitute
[tex]a_{n} = -4 + (n - 1)5[/tex]
[tex]a_{n} = -4 +5n-5[/tex]
[tex]a_{n} = 5n-9[/tex]