Respuesta :

Answer:

[tex]a_{n} = 5n-9[/tex]

Step-by-step explanation:

we have  the following sequence,

[tex]-4,1,6,11,16,...[/tex]

where

[tex]a_1=-4\\a_2=1\\a_3=6\\a_4=11\\a_5=16[/tex]

so

[tex]a_2-a_1=1-(-4)=5[/tex] -----> [tex]a_2=a_1+5[/tex]

[tex]a_3-a_2=6-1=5[/tex] -----> [tex]a_3=a_2+5[/tex]

[tex]a_4-a_3=11-6=5[/tex] -----> [tex]a_4=a_3+5[/tex]

[tex]a_5-a_4=16-116=5[/tex] -----> [tex]a_5=a_4+5[/tex]

Note there is a common difference d=5 between consecutive terms

This indicates the sequence is arithmetic with n th term

so

[tex]a_{n} = a₁ + (n - 1)d[/tex]

where a₁ is the first term and d the common difference

substitute

[tex]a_{n} = -4 + (n - 1)5[/tex]

[tex]a_{n} = -4 +5n-5[/tex]

[tex]a_{n} = 5n-9[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico