Explanation:
1) Initial mass of the Cesium-137=[tex]N_o[/tex]= 180 mg
Mass of Cesium after time t = N
Formula used :
[tex]N=N_o\times e^{-\lambda t}\\\\\lambda =\frac{0.693}{t_{\frac{1}{2}}}[/tex]
Half life of the cesium-137 = [tex]t_{1/2}=30 years[p/tex]
where,
[tex]N_o[/tex] = initial mass of isotope
N = mass of the parent isotope left after the time, (t)
[tex]t_{\frac{1}{2}}[/tex] = half life of the isotope
[tex]\lambda[/tex] = rate constant
[tex]N=N_o\times e^{-(\frac{0.693}{t_{1/2}})\times t}[/tex]
Now put all the given values in this formula, we get
[tex]N=180mg\times e^{-\frac{0.693}{30 years}\times t}[/tex]
Mass that remains after t years.
[tex]N=180 mg\times e^{0.0231 year^{-1}\times t}[/tex]
Therefore, the parent isotope remain after one half life will be, 100 grams.
2)
t = 70 years
[tex]N_o=180 mg[/tex]
[tex]t_{1/2}= 30 yeras[/tex]
[tex]N=180mg\times e^{-\frac{0.693}{30 years}\times 70 years}[/tex]
N = 35.73 mg
35.73 mg of cesium-137 will remain after 70 years.
3)
[tex]N_o=180 mg[/tex]
[tex]t_{1/2}= 30 yeras[/tex]
N = 1 mg
t = ?
[tex]1 mg =180mg\times e^{-\frac{0.693}{30 years}\times t}[/tex]
[tex]\frac{-30 year}{0.693}\times \ln \frac{1 mg}{180 mg}=t[/tex]
t = 224.80 years ≈ 225 years
After 225 years only 1 mg of cesium-137 will remain.