If​ A, B, and C are n times nn×n invertible​ matrices, does the equation Upper C Superscript negative 1 Baseline (Upper A plus Upper X )Upper B Superscript negative 1 Baseline equals Upper I Subscript nC−1(A+X)B−1=In have a solution​ X? If​ so, find it.Select the correct choice below and, if necessary, fill in the answer box within your choice. A. The solution is X=___B. There is no solution

Respuesta :

Looks like the matrix equation is supposed to be

[tex]C^{-1}(A+X)B^{-1}=I_n[/tex]

where [tex]I_n[/tex] presumably denotes the [tex]n\times n[/tex] identity matrix.

Since [tex]A,B,C[/tex] are all invertible, we have by multiplying on the left by [tex]C[/tex],

[tex]C(C^{-1}(A+X)B^{-1})=CI_n[/tex]

[tex](CC^{-1})((A+X)B^{-1})=C[/tex]

[tex](A+X)B^{-1}=C[/tex]

then multiplying on the right by [tex]B[/tex],

[tex]((A+X)B^{-1})B=CB[/tex]

[tex](A+X)(B^{-1}B)=CB[/tex]

[tex]A+X=CB[/tex]

and finally subtracting [tex]A[/tex] from both sides to end up with

[tex]X=CB-A[/tex]

RELAXING NOICE
Relax