Looks like the matrix equation is supposed to be
[tex]C^{-1}(A+X)B^{-1}=I_n[/tex]
where [tex]I_n[/tex] presumably denotes the [tex]n\times n[/tex] identity matrix.
Since [tex]A,B,C[/tex] are all invertible, we have by multiplying on the left by [tex]C[/tex],
[tex]C(C^{-1}(A+X)B^{-1})=CI_n[/tex]
[tex](CC^{-1})((A+X)B^{-1})=C[/tex]
[tex](A+X)B^{-1}=C[/tex]
then multiplying on the right by [tex]B[/tex],
[tex]((A+X)B^{-1})B=CB[/tex]
[tex](A+X)(B^{-1}B)=CB[/tex]
[tex]A+X=CB[/tex]
and finally subtracting [tex]A[/tex] from both sides to end up with
[tex]X=CB-A[/tex]