Respuesta :

Answer:

C

Step-by-step explanation:

y<3x+1

let x=1, let y=-3

-3<3(1)+1

-3<4

C is able to satisfy the formula

The solutions of an inequality are the true values of the inequality.

The solution of [tex]\mathbf{y < 3x + 1}[/tex] is (1, -3)

The inequality is given as:

[tex]\mathbf{y < 3x + 1}[/tex]

Start by testing the options

(A) (-3, -2)

This gives

[tex]\mathbf{-2 < 3(-3) + 1}[/tex]

[tex]\mathbf{-2 < -9 + 1}[/tex]

[tex]\mathbf{-2 < -8}[/tex]

This is false, because [tex]\mathbf{-2 > -8}[/tex]

(B) (3, 14)

This gives

[tex]\mathbf{14 < 3(3) + 1}[/tex]

[tex]\mathbf{14 < 9 + 1}[/tex]

[tex]\mathbf{14 < 10}[/tex]

This is false, because [tex]\mathbf{14 > 10}[/tex]

(C) (1, -3)

This gives

[tex]\mathbf{-3 < 3(1) + 1}[/tex]

[tex]\mathbf{-3 < 3 + 1}[/tex]

[tex]\mathbf{-3 < 4}[/tex]

This is true, because [tex]\mathbf{-3 < 4}[/tex]

Hence, the solution of [tex]\mathbf{y < 3x + 1}[/tex] is (1, -3)

Read more about inequalities at:

https://brainly.com/question/20872996

ACCESS MORE
EDU ACCESS
Universidad de Mexico