Respuesta :
Answer:
C
Step-by-step explanation:
y<3x+1
let x=1, let y=-3
-3<3(1)+1
-3<4
C is able to satisfy the formula
The solutions of an inequality are the true values of the inequality.
The solution of [tex]\mathbf{y < 3x + 1}[/tex] is (1, -3)
The inequality is given as:
[tex]\mathbf{y < 3x + 1}[/tex]
Start by testing the options
(A) (-3, -2)
This gives
[tex]\mathbf{-2 < 3(-3) + 1}[/tex]
[tex]\mathbf{-2 < -9 + 1}[/tex]
[tex]\mathbf{-2 < -8}[/tex]
This is false, because [tex]\mathbf{-2 > -8}[/tex]
(B) (3, 14)
This gives
[tex]\mathbf{14 < 3(3) + 1}[/tex]
[tex]\mathbf{14 < 9 + 1}[/tex]
[tex]\mathbf{14 < 10}[/tex]
This is false, because [tex]\mathbf{14 > 10}[/tex]
(C) (1, -3)
This gives
[tex]\mathbf{-3 < 3(1) + 1}[/tex]
[tex]\mathbf{-3 < 3 + 1}[/tex]
[tex]\mathbf{-3 < 4}[/tex]
This is true, because [tex]\mathbf{-3 < 4}[/tex]
Hence, the solution of [tex]\mathbf{y < 3x + 1}[/tex] is (1, -3)
Read more about inequalities at:
https://brainly.com/question/20872996