Answer:
[tex]N_T=2086285.67[/tex]
Explanation:
Given;
Thickness of the glass plate, [tex]x=2.95\times 10^{-3}\ m[/tex]
refractive index of the glass plate, [tex]n=1.6[/tex]
wavelength of light source in vacuum, [tex]\lambda=600\times 10^{-9}\ m[/tex]
distance between the source and the screen, [tex]d=1.25\ m[/tex]
Distance travelled by the light from source to screen in vacuum:
[tex]d_v=d-x[/tex]
[tex]d_v=1.25-0.00295[/tex]
[tex]d_v=1.24705\ m[/tex]
So the no. of wavelengths in the vacuum:
[tex]N=\frac{d_v}{\lambda}[/tex]
[tex]N=\frac{1.24705}{6\times 10^{-7}}[/tex]
[tex]N\approx2.0784\times 10^{6}[/tex] .......................(1)
Now we find the wavelength of the light wave in the glass:
[tex]n=\frac{\lambda}{\lambda'}[/tex]
where:
[tex]\lambda'=[/tex] wavelength of light in the medium of glass.
[tex]1.6=\frac{600\times 10^{-9}}{\lambda'}[/tex]
[tex]\lambda'=375\times 10^{-9}\ m=375\ nm[/tex]
Now the no. of wavelengths in the glass:
[tex]N'=\frac{x}{\lambda'}[/tex]
[tex]N'=\frac{2.95\times 10^{-3}}{375\times 10^{-9}}[/tex]
[tex]N'=7.8667\times 10^{3}[/tex] ............................(2)
From (1) & (2):
[tex]N_T=N+N'[/tex]
[tex]N_T=2086285.67[/tex]