Respuesta :
Answer:
a) Δx₂ = 31*Δt
b) Δx₁ = 977.5 / a
c) a = 23 / Δt
e) Δx₁ = 42.5*Δt
g) Δt = 0.0565 h
i) a = 0.05 m/s²
Explanation:
Given
v₁ = 54 Mi/h
v₂ = 31 Mi/h
a) We apply the formula
Δx₂ = v₂*Δt
⇒ Δx₂ = 31*Δt (Assuming constant speed)
b) We use the formula
v₂² = v₁² - 2*a*Δx₁ ⇒ Δx₁ = (v₁² - v₂²) / (2*a)
⇒ Δx₁ = (54² - 31²) / (2*a)
⇒ Δx₁ = 977.5 / a
c) We use the equation
v₂ = v₁ - a*Δt ⇒ a = (v₁ - v₂) / Δt
⇒ a = (54 - 31) / Δt
⇒ a = 23 / Δt
e) We apply the formula
Δx₁ = v₁*Δt - 0.5*a*Δt²
Δx₁ = 54*Δt - 0.5*(23 / Δt)*Δt²
⇒ Δx₁ = 42.5*Δt
g) If Δx₁ = 2.4 Mi ⇒ 2.4 = 42.5*Δt ⇒ Δt = 0.0565 h
i) If a = 23 / Δt ⇒ a = 23 Mi / 0.0565 h = 407.29 Mi/h²
⇒ a = 0.05 m/s²
The mathematical relationship between parameters of an object in motion, are given by the kinematic equations of motion
The responses to the questions are:
(a) Δx₂ = v₂ × Δt
(b) [tex]\Delta x_1 = \mathbf{\dfrac{v_2^2 - v_1^2}{2 \times a}}[/tex]
(c) [tex]a = \mathbf{ \dfrac{v_1 - v_2 }{\Delta t}}[/tex]
(d) Δx₁ = Δx₂ + d
(e) [tex]\Delta x_1 = \mathbf{\dfrac{(v_1 + v_2) }{ 2 } \times \Delta t}[/tex]
(f) [tex]\Delta t = \mathbf{\dfrac{2 \cdot d}{v_1 - v_2}}[/tex]
(g) ≈ 0.21 hours
(h) [tex]The \ acceleration \ a = \mathbf{\dfrac{(v_1 - v_2)^2}{2 \cdot d}}[/tex]
(i) a ≈ 0.014 m/s²
The reason the above values are correct are as follows:
The given parameters are;
The velocity of the car, v₁ = 54 mi/h
Distance of the truck ahead, d = 2.4 mi
Direction of the truck ahead = The same direction
Speed of the truck, v₂ = 31 mi/h
Speed to which the car reduces to = v₂
Time it takes the car to reduce speed to v₂ = Δt
Minimum acceleration magnitude of the car = a
The cars direction of motion = The positive direction
(a) Required:
To write an expression, in terms of defined quantities, for the distance Δx₂ traveled by the truck in time Δt
Solution;
Given that the truck is traveling with constant velocity, we have;
Δx₂ = v₂ × Δt
(b) Required:
An expression for Δx₁, in terms of v₁, v₂, and a
Solution;
The appropriate kinematic of motion to use is v² = u² - 2·a·s
Where:
v = The final velocity
u = The initial velocity of the car
a = The acceleration
s = The distance travelled
Therefore, we have;
v₂² = v₁² - 2 × a × Δx₁
Therefore, the expression for Δx₁, is presented as follows;
[tex]\Delta x_1 = \mathbf{\dfrac{v_2^2 - v_1^2}{2 \times a}}[/tex]
(c) Required:
To enter an expression for the acceleration of the car, a, in terms of v₁, v₂, and Δt
Solution;
The appropriate kinematic equation of motion to use is v = u + a·t
Therefore;
v₂ = v₁ - a·Δt
Which gives;
[tex]a = \mathbf{ \dfrac{v_1 - v_2 }{\Delta t}}[/tex]
(d) Required:
To express Δx₁, in terms of Δx₂, and d, when collision is barely avoided by the driver
Solution:
Δx₁ = Δx₂ + d
(e) Required:
To write an expression for Δx₁ in terms of v₁, v₂, and Δt
Solution:
The appropriate kinematic equation of motion to adapt is s = u·t - (1/2)·a·t²
v₂ = v₁ - a·t
[tex]a = \dfrac{v_1 - v_2 }{\Delta t}[/tex]
Therefore, we have;
[tex]\Delta x_1 = v_1 \cdot \Delta t - \left(\dfrac{1}{2} \right) \times \dfrac{v_1 - v_2 }{ \Delta t } \times \left(\Delta t \right)^2 = \dfrac{(v_1 + v_2) }{ 2 } \times \Delta t[/tex]
[tex]\Delta x_1 = \mathbf{\dfrac{(v_1 + v_2) }{ 2 } \times \Delta t}[/tex]
(f) Required:
To write an expression for Δt in terms of v₁, v₂ and d
solution:
[tex]\Delta x_1 = \dfrac{(v_1 + v_2) }{ 2 } \times \Delta t[/tex]
[tex]\Delta x_2 + d = \dfrac{(v_1 + v_2) }{ 2 } \times \Delta t[/tex]
[tex]v_2 \times \Delta t + d = \dfrac{(v_1 + v_2) }{ 2 } \times \Delta t[/tex]
[tex]d = \dfrac{(v_1 + v_2) }{ 2 } \times \Delta t - v_2 \times \Delta t[/tex]
Using a graphing calculator, we have;
[tex]\Delta t = \mathbf{\dfrac{2 \cdot d}{v_1 - v_2}}[/tex]
(g) Required:
To calculate Δt in hours
Solution:
From [tex]\Delta t = \dfrac{2 \cdot d}{v_1 - v_2}[/tex], we have;
[tex]\Delta t = \dfrac{2 \times 2.4 \, mi}{54 \ mi/h - 31 \, mi/h} =\dfrac{24}{115} h[/tex]
Δt = 24/115 hours ≈ 0.21 hours
(h) Required:
To use the expression you entered in part (c) and (f) and enter an for a in terms of v₁, v₂ and d
solution:
From (c), we have;
[tex]\Delta t = \dfrac{2 \cdot d}{v_1 - v_2}[/tex]
From (f) we have
[tex]a = \dfrac{v_1 - v_2 }{\Delta t}[/tex]
We get;
[tex]a = \dfrac{v_1 - v_2 }{ \dfrac{2 \cdot d}{v_1 - v_2}} = \dfrac{(v_1 - v_2)^2}{2 \cdot d}[/tex]
[tex]The \ acceleration \ a = \mathbf{\dfrac{(v_1 - v_2)^2}{2 \cdot d}}[/tex]
(i) Required:
To calculate the value of a in meters per second squared
Solution:
From [tex]a = \dfrac{(v_1 - v_2)^2}{2 \cdot d}[/tex], we get;
[tex]a = \dfrac{(54 - 31)^2}{2 \times 2.4} =\dfrac{2,645}{24} \approx 110.21[/tex]
The acceleration of the car ≈ 125.95 mi/h²
1 mile = 1609.344 meters
125.95 mi/h² = 125.95 mi/h² × 1,609.344 m/mi × (hr ²) / (3,600 s)² ≈ 0.014 m/s²
Learn more about equations of motion here:
https://brainly.com/question/24527971