Answer:
[tex]y_{steady}(t) = 0.636times sin(15.7t + 1.507)\\\\[/tex]
Time lag = 0.096 sec
Explanation:
A first order system with simple sinusoidal signal as input, the output is of the form:
[tex]y = ce^\frac{-t}{ \tau } + m( \omega)kAsin(15.7t + \phi( \omega))\\\\\omega = 15.7 rad/s\\\\[/tex]
For first order instrument :
t = 1 sec
k = 1
[tex]m( \omega )=\frac{1}{\sqrt{1 + (t \omega)^2} } \\\\=\frac{1}{\sqrt{1 + (1 *15.7)^2} }\\\\=0.0636[/tex]
[tex]\phi ( \omega)= -tan^{-1} \tau \omega\\\\=-tan^{-1} (1 *15.7) = -86.36^o = -1.507 rad\\[/tex]
[tex]y_{steady} = m( \omega)kAsin(15.7t + \phi( \omega))[/tex]
[tex]y_{steady}(t) = 0.0636 \times 1 \times 10 \times sin(15.7t - 1.507)\\\\[/tex]
[tex]y_{steady}(t) = 0.636 \times sin(15.7t - 1.507)\\\\[/tex]
The expected time lag between input and output signal
[tex]\beta_1 = \phi( \omega)/ \omega\\\\= \frac{-1.507}{15.7} \\\\= 0.096 sec[/tex]