Answer with Explanation:
We are given that
Radius of solid core wire=r=2.28 mm=[tex]2.28\times 10^{-3} m[/tex]
[tex] 1mm=10^{-3} m[/tex]
Radius of each strand of thin wire=r'=0.456 mm=[tex]0.456\times 10^{-3} m[/tex]
Current density of each wire=[tex]J=3750 A/m^2[/tex]
a.Area =[tex]\pi r^2[/tex]
Where [tex]\pi=3.14[/tex]
Using the formula
Cross section area of copper wire has solid core =[tex]3.14\times (2.28\times 10^{-3})^2=16.3\times 10^{-6} m^2[/tex]
Current density =[tex]J=\frac{I}{A}[/tex]
Using the formula
[tex]3750=\frac{I}{16.3\times 10^{-6}}[/tex]
[tex]I=3750\times 16.3\times 10^{-6}=0.061 A[/tex]
Total number of strands=19
Area of strand wire=[tex]A'=19\times 3.14\times (0.456\times 10^{-3})^2=12.4\times 10^{-6} m^2[/tex]
[tex]J'=\frac{I'}{A'}[/tex]
[tex]3750=\frac{I'}{19\times 3.14(0.456\times 10^{-3})^2}[/tex]
[tex]I'=3750\times 19\times 3.14(0.456\times 10^{-3})^2[/tex]
[tex]I'=0.047 A[/tex]
b.Resistivity of copper wire=[tex]\rho=1.69\times 10^{-8}\Omega-m[/tex]
Length of each wire =6.25 m
Resistance, R=[tex]\frac{\rho l}{A}[/tex]
Using the formula
Resistance of solid core wire=[tex]R=\frac{1.69\times 10^{-8}\times 6.25}{16.3\times 10^{-6}}=6.5\times 10^{-3}\Omega[/tex]
Resistance of strand wire=[tex]R'=\frac{1.69\times 10^{-8}\times 6.25}{12.4\times 10^{-6}}=8.5\times 10^{-3}\Omega[/tex]