Two insulated copper wires of similar overall diameter have very different interiors. One wire possesses a solid core of copper, with a circular cross section of radius 2.28 mm. The other wire is composed of 19 strands of thin copper wire bundled together. Each strand has a circular cross section of radius 0.456 mm. The current density J in each wire is the same. J = 3750 A /m^2

a. How much current does each wire carry?
b. What is the resistance of a 6.25 m length of each wire?

Respuesta :

Answer with Explanation:

We are given that

Radius of  solid core wire=r=2.28 mm=[tex]2.28\times 10^{-3} m[/tex]

[tex] 1mm=10^{-3} m[/tex]

Radius of each strand  of thin wire=r'=0.456 mm=[tex]0.456\times 10^{-3} m[/tex]

Current density of each wire=[tex]J=3750 A/m^2[/tex]

a.Area =[tex]\pi r^2[/tex]

Where [tex]\pi=3.14[/tex]

Using the formula

Cross section area of copper wire has solid core =[tex]3.14\times (2.28\times 10^{-3})^2=16.3\times 10^{-6} m^2[/tex]

Current density =[tex]J=\frac{I}{A}[/tex]

Using the formula

[tex]3750=\frac{I}{16.3\times 10^{-6}}[/tex]

[tex]I=3750\times 16.3\times 10^{-6}=0.061 A[/tex]

Total number of strands=19

Area of strand wire=[tex]A'=19\times 3.14\times (0.456\times 10^{-3})^2=12.4\times 10^{-6} m^2[/tex]

[tex]J'=\frac{I'}{A'}[/tex]

[tex]3750=\frac{I'}{19\times 3.14(0.456\times 10^{-3})^2}[/tex]

[tex]I'=3750\times 19\times 3.14(0.456\times 10^{-3})^2[/tex]

[tex]I'=0.047 A[/tex]

b.Resistivity of copper wire=[tex]\rho=1.69\times 10^{-8}\Omega-m[/tex]

Length of each wire =6.25 m

Resistance, R=[tex]\frac{\rho l}{A}[/tex]

Using the formula

Resistance of solid core wire=[tex]R=\frac{1.69\times 10^{-8}\times 6.25}{16.3\times 10^{-6}}=6.5\times 10^{-3}\Omega[/tex]

Resistance of strand wire=[tex]R'=\frac{1.69\times 10^{-8}\times 6.25}{12.4\times 10^{-6}}=8.5\times 10^{-3}\Omega[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico