Answer:
The value of the activation energy is 240.96 kJ/mol.
Explanation:
According to the Arrhenius equation,
[tex]k=A\times e^{\frac{-Ea}{RT}}[/tex]
[tex]\ln k=-\frac{E_a}{RT}+\ln A[/tex]
[tex]\log k=-\frac{E_a}{2.303RT}+\log A[/tex]
The graph between log(k) and (1/T) will give straight line with negative slope along with the intercept corresponding to the value of A.
Slope f the line = [tex]-\frac{E_a}{2.303R}[/tex]
The slope of the line :
[tex]=\frac{\log (k_2)-\log(k_1)}{\frac{1}{T_2}-\frac{1}{T_1}}[/tex]
[tex]T_1=600^oC=600+273K=873 K[/tex]
[tex]k_1=1.87\times 10^{-3} (Ms)^{-1}[/tex]
[tex]T_2=650^oC=650+273K=923K[/tex]
[tex]k_2=0.0113 (Ms)^{-1}[/tex]
[tex]-\frac{E_a}{2.303R}=\frac{\log (k_2)-\log(k_1)}{\frac{1}{T_2}-\frac{1}{T_1}}[/tex]
[tex]-\frac{E_a}{2.303\times 8.314J/K mol}=\frac{\log (0.0113 (Ms)^{-1})-\log(1.87\times 10^{-3} (Ms)^{-1})}{\frac{1}{923 K}-\frac{1}{873 K}}[/tex]
[tex]-E_a=-240,959.466J/mol[/tex]
[tex]E_a=240,959.466 J/mol=240.96 kJ/mol[/tex]
The value of the activation energy is 240.96 kJ/mol.