If an object is dropped from a height of 45 feet, the function d = - 16t ^ 2 + 45 gives the height of the object after t seconds. Graph this function. Approximately how long does it take the object to reach the ground (d = 0) )?

Respuesta :

The time taken by the object to reach the ground is [tex]1.677[/tex] (app.)

Explanation:

The given function is [tex]d=-16 t^{2}+45[/tex]

To graph the function in the graph, let us substitute the values for t to find the value of d.

t             d

0           45

1            29

2          -19

3          -99

4          -211

5          -355

These values are plotted in the graph which is attached below:

To determine the time it takes the object to reach the ground, let us substitute [tex]d=0[/tex] in the function [tex]d=-16 t^{2}+45[/tex], we get,

      [tex]0=-16 t^{2}+45[/tex]

  [tex]-45=-16t^2[/tex]

     [tex]45=16t^2[/tex]

[tex]2.8125=t^2[/tex]

[tex]\pm1.677=t[/tex]

The value of t cannot be negative.

Thus, [tex]t=1.677[/tex] (app.)

Thus, the time taken by the object to reach the ground is [tex]1.677[/tex] (app.)

Ver imagen vijayalalitha
RELAXING NOICE
Relax