Let Ab e an invertiblen×nmatrix, and let B be ann×pmatrix. Show thatthe equationAX=Bhas a unique solutionA−1B. Hint: You need to show thatA−1Bis a solution, and that there is no other solution. You might do this secondpart by making an argument each column ofB

Respuesta :

Answer:

In fact, [tex]A^{-1} B[/tex]  is a solution to the equation AX = B. Let me show you.

Step-by-step explanation:

Step 1 .

Remember that there's a very special [tex]n[/tex]x[tex]n[/tex] matrix, called "the identity matrix", we denote it as [tex]I_{N}[/tex].

That matrix is special because

               

                                    [tex]I_{N}[/tex]*(Any matrix)  = Any matrix,

So, when I say, "Any matrix", that literally means, "Any martrix", well, any [tex]n[/tex]x[tex]n[/tex] matrix. Therefore;

 

                                                     [tex]I_{N}[/tex]*A = A

Step 2.

Remember that A is invertible if there exist a matrix [tex]A^{-1}[/tex] such that

                                                      [tex]A[/tex] *[tex]A^{-1}[/tex] =   [tex]I_{N}[/tex].

[tex]A^{-1}[/tex]  is just the name of it, the most important is the property I just mentioned.

Step 3.

Now, to show that,  we just have to show that [tex]A^{-1} B[/tex] is a solution of [tex]AX = B[/tex], in other words we have to show that,  [tex]A*(A^{-1} B) = B[/tex]

Notice that

                     [tex]A*(A^{-1} * B ) = (A*A^{-1} ) *B = I_{N} * B = B[/tex]

Therefore, [tex]A^{-1} B[/tex] is a solution of [tex]AX = B[/tex].

               

ACCESS MORE
EDU ACCESS