Answer:
Step-by-step explanation:
For Compound Interest with continuous deposit,
We have that:
[tex]\frac{dS}{dt}=rS+k[/tex]
[tex]\frac{dS}{dt}-rS=k[/tex]
Using Integrating factor: [tex]e^{\int\ {-r} \, dt }[/tex]=[tex]e^{-rt}[/tex]
[tex]\frac{dS}{dt}e^{-rt}=ke^{-rt}[/tex]
Taking Integrals from 0 to t
[tex]Se^{-rt}=\frac{k}{-r}e^{-rt}+C\\S=\frac{k}{-r}+Ce^{rt}\\When t=0\\C=S_{0}+\frac{k}{r}[/tex]
Now substituting back C
We have:
[tex]Se^{-rt}=\frac{k}{-r}e^{-rt}+S_{0}+\frac{k}{r}\\S(t)=S_{0}e^{rt}+\frac{k}{r}-\frac{k}{r}e^{rt}\\S(t)=S_{0}e^{rt}+\frac{k}{r}(1-e^{rt})[/tex]
[tex]Se^{-rt}=\frac{k}{-r}e^{-rt}+S_{0}+\frac{k}{r}\\S(t)=S_{0}e^{rt}+\frac{k}{r}-\frac{k}{r}e^{rt}\\S(t)=S_{0}e^{rt}+\frac{k}{r}(1-e^{rt})[/tex]
If initial deposit =$750, Continuous Deposit = 750, t= 4X 25 years=100
[tex]S(t)=S_{0}e^{rt}+\frac{k}{r}(1-e^{rt})\\120000=750e^{100r}+\frac{750}{r}(1-e^{100r})\\160=e^{100r}+\frac{750}{r}-\frac{750}{r}e^{100r}\\[/tex]