Some SbCl5 is allowed to dissociate into SbCl3 and Cl2 at 521 K. At equilibrium, [SbCl5] = 0.195 M, and [SbCl3] = [Cl2] = 6.98×10-2 M. Additional SbCl5 is added so that [SbCl5]new = 0.370 M and the system is allowed to once again reach equilibrium.

SbCl5(g) <-> SbCl3(g) + Cl2(g) K = 2.50×10-2 at 521 K

(a) In which direction will the reaction proceed to reach equilibrium? _________to the right to the left
(b) What are the new concentrations of reactants and products after the system reaches equilibrium?

[SbCl5] = ____M
[SbCl3] = ___M
[Cl2] = ___M

Respuesta :

Answer:

a) The equilibrium will shift in the right direction.

b) The new equilibrium concentrations after reestablishment of the equilibrium :

[tex][SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M[/tex]

[tex][SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M[/tex]

[tex][Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M[/tex]

Explanation:

[tex]SbCl_5(g)\rightleftharpoons SbCl_3(g) + Cl_2(g)[/tex]

a) Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.

This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.

On increase in amount of reactant

[tex]SbCl_5(g)\rightleftharpoons SbCl_3(g) + Cl_2(g)[/tex]

If the reactant is increased, according to the Le-Chatlier's principle, the equilibrium will shift in the direction where more product formation is taking place. As the number of moles of [tex]SbCl_5[/tex] is  increasing .So, the equilibrium will shift in the right direction.

b)

[tex]SbCl_5(g)\rightleftharpoons SbCl_3(g) + Cl_2(g)[/tex]

Concentration of [tex]SbCl_5[/tex]  = 0.195 M

Concentration of [tex]SbCl_3[/tex]  = [tex]6.98\times 10^{-2} M[/tex]

Concentration of [tex]Cl_2[/tex]  = [tex]6.98\times 10^{-2} M[/tex]

On adding more [tex][SbCl_5[/tex] to 0.370 M at equilibrium :

[tex]SbCl_5(g)\rightleftharpoons SbCl_3(g) + Cl_2(g)[/tex]

Initially

0.370 M         [tex]6.98\times 10^{-2}M[/tex]    

At equilibrium:

(0.370-x)M   [tex](6.98\times 10^{-2}+x)M[/tex]  

The equilibrium constant of the reaction  = [tex]K_c[/tex]

[tex]K_c=2.50\times 10^{-2}[/tex]

The equilibrium expression is given as:

[tex]K_c=\frac{[SbCl_3][Cl_2]}{[SbCl_5]}[/tex]

[tex]2.50\times 10^{-2}=\frac{(6.98\times 10^{-2}+x)M\times (6.98\times 10^{-2}+x)M}{(0.370-x) M}[/tex]

On solving for x:

x = 0.0233 M

The new equilibrium concentrations after reestablishment of the equilibrium :

[tex][SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M[/tex]

[tex][SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M[/tex]

[tex][Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M[/tex]

ACCESS MORE