(a) The reverse-saturation current of a pn junction diode is IS = 10−11 A. Determine the diode voltage to produce currents of (i) 10 µA, 100 µA, 1 mA, and (ii) −5 × 10−12 A. (b) Repeat part (a) for IS = 10−13 A and part (a) (ii) for −10−14 A.

Respuesta :

Answer:

The equation used to solve a diode is

[tex]i_d = I_se^\frac{V_d}{V_T}-1[/tex]

  • [tex]i_d[/tex] is the current going through the diode
  • [tex]I_s[/tex] is your saturation current
  • [tex]V_D[/tex] is the voltage across your diode
  • [tex]V_T[/tex] is the voltage of the diode at a certain room temperature. by default, you always use [tex]V_T=25.9mV[/tex] for room temperature.

If you look at the equation, [tex]i_d = I_se^\frac{V_d}{V_T}-1[/tex], you'd notice that the [tex]e^\frac{V_d}{V_T}[/tex] grow exponentially fast, so we can ignore the -1 in the equation because it's so small compared to the exponential.

[tex]i_d = I_se^\frac{V_d}{V_T}-1[/tex]

[tex]i_d\approx I_se^\frac{V_d}{V_T}[/tex]

Therefore, use [tex]i_d= I_se^\frac{V_d}{V_T}[/tex] to solve your equation.

Rearrange your equation to solve for [tex]V_D[/tex].

[tex]V_D=V_Tln(\frac{i_D}{I_s})[/tex]

a.)

i.)

You're given [tex]I_s=10^{-11}A[/tex]

at [tex]i_d=10\mu A[/tex],     [tex]V_D=V_Tln(\frac{i_D}{I_s})=(25.9\cdot10^{-3})ln(\frac{10\cdot10^{-6}}{10\cdot10^{-11}})=.298V[/tex]

at [tex]i_d=100\mu A[/tex],   [tex]V_D=V_Tln(\frac{i_D}{I_s})=(25.9\cdot10^{-3})ln(\frac{100\cdot10^{-6}}{10\cdot10^{-11}})=.358V[/tex]

at [tex]i_d=1mA[/tex],      [tex]V_D=V_Tln(\frac{i_D}{I_s})=(25.9\cdot10^{-3})ln(\frac{1\cdot10^{-3}}{10\cdot10^{-11}})=.417V[/tex]

note: always use  [tex]V_T=25.9mV[/tex]

ii.)

Just repeat part (i) but change to [tex]I_s=-5\cdot10^{-12}A[/tex]

b.)

same process as part A. You do the rest of the problem by yourself.

ACCESS MORE