Answer:
The equation used to solve a diode is
[tex]i_d = I_se^\frac{V_d}{V_T}-1[/tex]
If you look at the equation, [tex]i_d = I_se^\frac{V_d}{V_T}-1[/tex], you'd notice that the [tex]e^\frac{V_d}{V_T}[/tex] grow exponentially fast, so we can ignore the -1 in the equation because it's so small compared to the exponential.
[tex]i_d = I_se^\frac{V_d}{V_T}-1[/tex]
[tex]i_d\approx I_se^\frac{V_d}{V_T}[/tex]
Therefore, use [tex]i_d= I_se^\frac{V_d}{V_T}[/tex] to solve your equation.
Rearrange your equation to solve for [tex]V_D[/tex].
[tex]V_D=V_Tln(\frac{i_D}{I_s})[/tex]
a.)
i.)
You're given [tex]I_s=10^{-11}A[/tex]
at [tex]i_d=10\mu A[/tex], [tex]V_D=V_Tln(\frac{i_D}{I_s})=(25.9\cdot10^{-3})ln(\frac{10\cdot10^{-6}}{10\cdot10^{-11}})=.298V[/tex]
at [tex]i_d=100\mu A[/tex], [tex]V_D=V_Tln(\frac{i_D}{I_s})=(25.9\cdot10^{-3})ln(\frac{100\cdot10^{-6}}{10\cdot10^{-11}})=.358V[/tex]
at [tex]i_d=1mA[/tex], [tex]V_D=V_Tln(\frac{i_D}{I_s})=(25.9\cdot10^{-3})ln(\frac{1\cdot10^{-3}}{10\cdot10^{-11}})=.417V[/tex]
note: always use [tex]V_T=25.9mV[/tex]
ii.)
Just repeat part (i) but change to [tex]I_s=-5\cdot10^{-12}A[/tex]
b.)
same process as part A. You do the rest of the problem by yourself.