Respuesta :
Answer:
[tex]5.35\times10^-2\ lb/in^3[/tex]
Explanation:
Given density of chloroform is 1.48 g/mL
We need to find the density in [tex]lb/in^3[/tex]
Also, we have given 2.54 cm = 1 in and 2.205 lb = 1 kg
We know [tex]1ml=1cm^3[/tex]
Also, 2.54 cm = 1 in
[tex]2.54^3\ cm^3=1\ in^3\\16.38\ cm^3=1\ in^3\\16.38\ cm^3=16.38\ ml=1\ in^3[/tex]
And 1000 g = 1 kg
[tex]1\ g=\frac{1kg}{1000}\\\\1\ kg=2.205\ lb\\\\1\ g=\frac{2.205\ lb}{1000}=2.205\times10^{-3}\ lb[/tex]
Now we will plug
[tex]1\ ml=\frac{1}{16.38}\ in^3 \\\\And\ 1\ g=2.205\times10^-3\ lb[/tex]
So,
[tex]1.48\ \frac{g}{ml}=1.48\times 2.205\times10^{-3}\frac{lb}{\frac{in^3}{16.38} }\\ \\=1.48\times2.205\times16.38\times10^{-3}\frac{lb}{in^3}\\ =5.35\times10^{-2}\frac{lb}{in^3}[/tex]
The density of the liquid chloroform is 0.0535 lb/in³.
The given parameters:
- Density of the liquid, = 1.48 g/mL
The density of the liquid chloroform in pounds per cubic inches (lb/in³) is calculated by multiplying with the appropriate equivalent units as demonstrated below;
[tex]\rho = 1.48 \ \frac{g}{mL} \times \frac{1 \ mL}{cm^3} \times \frac{(2.54cm)^3}{(1\ in)^3} \times \frac{1 \ kg}{1000 \ g} \times \frac{2 .205 \ lb}{1 \ kg} = 0.0535 \ lb/in^3[/tex]
Thus, the density of the liquid chloroform in pounds per cubic inches is determined to be 0.0535 lb/in³.
Learn more about conversion of density here: https://brainly.com/question/13858006
Otras preguntas
