Answer: The hydronium ion concentration in the solution is [tex]1.29\times 10^{-4}M[/tex]
Explanation:
To calculate the molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]
Moles hydrochloric acid solution = 0.060 mol
Volume of solution = 1 L
Putting values in above equation, we get:
[tex]\text{Molarity of HCl}=\frac{0.060}{1L}\\\\\text{Molarity of HCl}=0.060M[/tex]
The chemical reaction for aniline and HCl follows the equation:
[tex]C_6H_5COO^-+HCl\rightarrow C_6H_5COOH+Cl^-[/tex]
Initial: 0.24 0.060 0.31
Final: 0.18 - 0.37
To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
[tex]pH=pK_a+\log(\frac{[\text{conjugate acid}]}{[\text{base}]})[/tex]
[tex]pH=pK_a+\log(\frac{[C_6H_5COO^-]}{[C_6H_5COOH]})[/tex]
We are given:
[tex]pK_a[/tex] = negative logarithm of acid dissociation constant of benzoic acid = 4.2
[tex][C_6H_5COO^-]=0.18M[/tex]
[tex][C_6H_5COOH]=0.37M[/tex]
pH = ?
Putting values in equation 1, we get:
[tex]pH=4.2+\log(\frac{0.18}{0.37})\\\\pH=3.89[/tex]
To calculate the hydronium ion concentration in the solution, we use the equation:
[tex]pH=-\log[H_3O^+][/tex]
pH = 3.89
Putting values in above equation, we get:
[tex]3.89=-\log[H_3O^+][/tex]
[tex][H_3O^+]=10^{-3.89}=1.29\times 10^{-4}M[/tex]
Hence, the hydronium ion concentration in the solution is [tex]1.29\times 10^{-4}M[/tex]