Respuesta :

Option C:

[tex]$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{\frac{4 x}{5}}[/tex]

Solution:

Given expression is

[tex]$\sqrt[3]{\frac{4 x}{5}}[/tex]

Note: [tex]\sqrt[3]{125}=\sqrt[3]{{5^3}} = 5[/tex]

To find the correct expression for the above simplified expression.

Option A: [tex]\frac{\sqrt[3]{4 x}}{5}[/tex]

5 can be written as [tex]\sqrt[3]{125}[/tex].

[tex]$\frac{\sqrt[3]{4 x}}{5}=\frac{\sqrt[3]{4 x}}{\sqrt[3]{125} }[/tex]

       [tex]$=\sqrt[3]{\frac{4x}{125} }[/tex]

It is not the given simplified expression.

Option B: [tex]\frac{\sqrt[3]{20 x}}{5}[/tex]

[tex]$\frac{\sqrt[3]{20 x}}{5}=\frac{\sqrt[3]{20 x}}{\sqrt[3]{125} }[/tex]

         [tex]$=\sqrt[3]{\frac{20x}{125} }[/tex]

Cancel the common factor in both numerator and denominator.

         [tex]$=\sqrt[3]{\frac{4x}{25} }[/tex]

It is not the given simplified expression.

Option C: [tex]\frac{\sqrt[3]{100 x}}{5}[/tex]

[tex]$\frac{\sqrt[3]{100 x}}{5}=\frac{\sqrt[3]{100 x}}{\sqrt[3]{125} }[/tex]

           [tex]$=\sqrt[3]{\frac{100x}{125} }[/tex]

Cancel the common factor in both numerator and denominator.

           [tex]$=\sqrt[3]{\frac{4 x}{5}}[/tex]

It is the given simplified expression.

Option D: [tex]\frac{\sqrt[3]{100 x}}{125}[/tex]

[tex]$\frac{\sqrt[3]{100 x}}{125}=\frac{\sqrt[3]{100 x}}{5^3}[/tex]

It is not the given simplified expression.

Hence Option C is the correct answer.

[tex]$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{\frac{4 x}{5}}[/tex]

ACCESS MORE
EDU ACCESS