Respuesta :
The equation of the line in point-slope form is given by:
[tex]y-yo = m (x-xo) [/tex]
Where,
(xo, yo): point that belongs to the line
m: slope of the line
The slope is given by:
[tex]m = \frac{y2-y1}{x2-x1} [/tex]
Substituting values:
[tex]m = \frac{-5-(-9)}{10-9} [/tex]
Rewriting:
[tex]m = \frac{-5+9}{10-9} [/tex]
[tex]m = \frac{4}{1} [/tex]
[tex]m=4[/tex]
Now we choose an ordered pair:
[tex](xo, yo) = (10, -5) [/tex]
Substituting values we have:
[tex]y-(-5)=4(x-10)[/tex]
[tex]y+5=4(x-10)[/tex]
We now rewrite the equation in its standard form:
[tex] y = mx + b [/tex]
Where,
b: cut with the y axis.
We have then:
[tex]y = 4x - 40 - 5 y = 4x - 45[/tex]
Answer:
point-slope form:
[tex]y+5=4(x-10)[/tex]
or
[tex]y+9=4(x-9)[/tex]
standard form
[tex]y = 4x- 45[/tex]
[tex]y-yo = m (x-xo) [/tex]
Where,
(xo, yo): point that belongs to the line
m: slope of the line
The slope is given by:
[tex]m = \frac{y2-y1}{x2-x1} [/tex]
Substituting values:
[tex]m = \frac{-5-(-9)}{10-9} [/tex]
Rewriting:
[tex]m = \frac{-5+9}{10-9} [/tex]
[tex]m = \frac{4}{1} [/tex]
[tex]m=4[/tex]
Now we choose an ordered pair:
[tex](xo, yo) = (10, -5) [/tex]
Substituting values we have:
[tex]y-(-5)=4(x-10)[/tex]
[tex]y+5=4(x-10)[/tex]
We now rewrite the equation in its standard form:
[tex] y = mx + b [/tex]
Where,
b: cut with the y axis.
We have then:
[tex]y = 4x - 40 - 5 y = 4x - 45[/tex]
Answer:
point-slope form:
[tex]y+5=4(x-10)[/tex]
or
[tex]y+9=4(x-9)[/tex]
standard form
[tex]y = 4x- 45[/tex]