a line passes through (9, –9) and (10, –5).write an equation for the line in point-slope form. rewrite the equation in standard form using integers. y 9 = (x – 9); –4x y = –45 y 9 = (x 9); –4x y = –45 y – 9 = (x 9); –4x y = 45 y – 9 = (x – 9); –4x y = 45

Respuesta :

The equation of the line in point-slope form is given by:
 [tex]y-yo = m (x-xo) [/tex]
 Where,
 (xo, yo): point that belongs to the line
 m: slope of the line
 The slope is given by:
 [tex]m = \frac{y2-y1}{x2-x1} [/tex]
 Substituting values:
 [tex]m = \frac{-5-(-9)}{10-9} [/tex]
 Rewriting:
 [tex]m = \frac{-5+9}{10-9} [/tex]
 [tex]m = \frac{4}{1} [/tex]
 [tex]m=4[/tex]
 Now we choose an ordered pair:
 [tex](xo, yo) = (10, -5) [/tex]
 Substituting values we have:
 [tex]y-(-5)=4(x-10)[/tex]
 [tex]y+5=4(x-10)[/tex]
 We now rewrite the equation in its standard form:
 [tex] y = mx + b [/tex]
 Where,
 b: cut with the y axis.
 We have then:
 [tex]y = 4x - 40 - 5 y = 4x - 45[/tex]
 Answer:
 point-slope form:
 [tex]y+5=4(x-10)[/tex]
 or
 [tex]y+9=4(x-9)[/tex]
 standard form
 [tex]y = 4x- 45[/tex]

Answer:

The answer is y+9=4(x-9); -4x+y=-45