Respuesta :

f ( z ) = z² - 2 + 2 i1 ) z = 0:f ( 0 ) = 0² - 2 + 2 i = - 2 + 2 i2 ) f ( - 2 + 2 i ) = ( - 2 + 2 i )² - 2 + 2 i = = 4 - 8 i + 4 i² - 2 + 2 i = 4 - 8 i - 4 - 2 + 2 i = - 2 - 6 i3 ) f ( - 2 - 6 i ) = ( - 2 - 6 i )² - 2 + 2 i = 4 + 24 i + 36 i² - 2 + 2 i == 4 + 24 i - 36 - 2 + 2 i = - 34 + 26 i. 

we have

[tex]f(z)=z^2-2+2i[/tex]

remember that

[tex]i^{2}=-1[/tex]

Step 1

Find the first output value for [tex]z=0[/tex]

substitute in the fractal-generating function

[tex]f(0)=0^2-2+2i[/tex]

[tex]f(0)=-2+2i[/tex]

Step 2

Find the second output value for [tex]z=-2+2i[/tex]

substitute in the fractal-generating function

[tex]f(-2+2i)=(-2+2i)^2-2+2i[/tex]

[tex]= 4-8i+4i^2-2+2i[/tex]

[tex]=2-6i+4*(-1)\\= 2-6i-4\\=-2-6i[/tex]  

so

[tex]f(-2+2i)=-2-6i[/tex]

Step 3

Find the third output value for [tex]z=-2-6i[/tex]

substitute in the fractal-generating function

[tex]f(-2-6i)=(-2-6i)^2-2+2i[/tex]

[tex]=4+24i+36i^2-2+2i[/tex]  

[tex]= 2+26i+36*(-1)\\= 2+26i-36\\=-34+26i[/tex]

so

[tex]f(-2-6i)=-34+26i[/tex]

therefore

the answer is

the first three output values of the fractal-generating function are

[tex][-2+2i,-2-6i,-34+26i][/tex]