Respuesta :
Hello,
12x^4+39x^3+9x²=x²(12x²+39x+9)=x²(12x²+36x+3x+9)=x²(4x(3x+9)+(3x+9))
=x²(3x+9)(4x+1)
=3x²(x+3)(4x+1)
12x^4+39x^3+9x²=x²(12x²+39x+9)=x²(12x²+36x+3x+9)=x²(4x(3x+9)+(3x+9))
=x²(3x+9)(4x+1)
=3x²(x+3)(4x+1)
Answer: The completely factored form will be
[tex]3x^2(4x+1)(x+3)[/tex]
Step-by-step explanation:
Since we have given that
[tex]12x^4 + 39x^3 + 9x^2[/tex]
We need to find the factored form,
So, here we go:
1) Taking out the common factor i.e. 3x² :
[tex]12x^4 + 39x^3 + 9x^2\\\\3x^2(4x^2+13x+3)[/tex]
2) We get a quadratic equation , we will split the middle term:
[tex](4x^2+13x+3)\\\\4x^2+12x+x+3=0\\\\4x(x+3)+1(x+3)=0\\\\(4x+1)(x+3)=0[/tex]
3) Now, combine the all of the factors:
[tex]3x^2(4x+1)(x+3)[/tex]
Hence, the completely factored form will be
[tex]3x^2(4x+1)(x+3)[/tex]
