Respuesta :
E = hf
c = speed of electromagnetic wave, c ≈ 3 * 10⁸ m/s,
Planck's constant h = 6.63 *10⁻³⁴ Js
h = Planck's constnat, Frquency, f = c/λ = (3*10⁸)/(488*10⁻⁹)
E = hf
E = hc/λ
E = (6.63 * 10⁻³⁴ * 3 * 10⁸) /(488 * 10⁻⁹)
Energy, E ≈ 4.0758 * 10⁻¹⁹ Joules.
c = speed of electromagnetic wave, c ≈ 3 * 10⁸ m/s,
Planck's constant h = 6.63 *10⁻³⁴ Js
h = Planck's constnat, Frquency, f = c/λ = (3*10⁸)/(488*10⁻⁹)
E = hf
E = hc/λ
E = (6.63 * 10⁻³⁴ * 3 * 10⁸) /(488 * 10⁻⁹)
Energy, E ≈ 4.0758 * 10⁻¹⁹ Joules.
Answer : The energy of a photon is, [tex]4.073\times 10^{-19}J[/tex]
Explanation :
Formula used :
[tex]E=\frac{h\times c}{\lambda}[/tex]
where,
E = energy = ?
h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]
c = speed of light = [tex]3\times 10^8m/s[/tex]
[tex]\lambda[/tex] = wavelength = [tex]488\times 10^{-9}m[/tex]
Now put all the given values in the above formula, we get the energy.
[tex]E=\frac{(6.626\times 10^{-34}Js)\times (3\times 10^8m/s)}{488\times 10^{-9}m}[/tex]
[tex]E=4.073\times 10^{-19}J[/tex]
Therefore, the energy of a photon is, [tex]4.073\times 10^{-19}J[/tex]
