Respuesta :
The correct values of x are required.
The correct options are [tex](0,4][/tex] and [tex](10,30][/tex]
The given expression is
[tex]\dfrac{1}{x}+\dfrac{1}{x-10}\geq \dfrac{2}{24}[/tex]
[tex]\dfrac{1}{x}+\dfrac{1}{x-10}\geq 0.083[/tex]
where x is the velocity of the boat
Let us apply the values of each interval
[tex](-\infty,0)[/tex]
[tex]\dfrac{1}{-1}+\dfrac{1}{-1-10}=-1-\dfrac{1}{11}\ngeq \dfrac{2}{24}[/tex]
[tex][4,10)[/tex]
[tex]\dfrac{1}{5}+\dfrac{1}{5-10}=0\ngeq \dfrac{2}{24}[/tex]
[tex][30,\infty)[/tex]
[tex]\dfrac{1}{40}+\dfrac{1}{40-10}=0.0583\ngeq 0.083[/tex]
Let us solve the equation
[tex]\dfrac{1}{x}+\dfrac{1}{x-10}=\dfrac{2}{24}\\\Rightarrow \dfrac{2x-10}{x^2-10x}=\dfrac{1}{12}\\\Rightarrow x^2-34x+120=0\\\Rightarrow x=\frac{-\left(-34\right)\pm \sqrt{\left(-34\right)^2-4\cdot \:1\cdot \:120}}{2\cdot \:1}\\\Rightarrow x=30,4[/tex]
Let us check the remaining options
[tex](0,4][/tex]
[tex]\dfrac{1}{1}+\dfrac{1}{1-10}=0.89\geq 0.083[/tex]
[tex](10,30][/tex]
[tex]\dfrac{1}{11}+\dfrac{1}{11-10}=1.09\geq 0.083[/tex]
So, the correct options are [tex](0,4][/tex] and [tex](10,30][/tex]
Learn more:
https://brainly.com/question/11897796
https://brainly.com/question/20085191