Answer:
Mean = 5
Variance = 8.3521
Standard Deviation = 2.89
Step-by-step explanation:
X has the uniform distribution on [a, b]
[a, b] = [a, 10]
Mean is solved using (a + b)/2
[tex]= \frac{a + b}{2}\\= \frac{0 + 10}{2}\\= \frac{10}{2}\\= 5[/tex]
Standard Deviation = [tex]\sqrt{variance}[/tex]
Standard Deviation =
[tex]=\frac{b - a}{\sqrt{12} } \\= \frac{10 - 0}{\sqrt{12} } \\= \frac{10}{\sqrt{12} } \\= \frac{10}{3.464 } \\= 2.886836028\\ = 2.89[/tex]
Variance = [tex](Standard Deviation)^{2}[/tex]
Variance = [tex]2.89^{2} = 8.3521[/tex]