Respuesta :
Answer:
Part a:The value of E(X) is 16.33, E(X^2) is 269.94 and value of V(X) is 3.46.
Part b:The expected price of a freezer of capacity X is $448.74.
Part c:The variance of the price of a freezer of capacity X is $2496.
Part d:The expected actual capacity of the freezer is 10.93
Step-by-step explanation:
From the data, the values of X and p(x) are as
X = 13.5 | 15.9 | 19.1
p(x) = 0.17 | 0.57 | 0.26
Part a
The values are as follows:
E(X)
[tex]E(x)=\sum x p(x)\\E(x)= [(13.5)(0.17)+(15.9)(0.57)+(19.1)(0.26)]\\E(x)= 16.33[/tex]
E(X^2)
[tex]E(x^2)=\sum x^2 p(x)\\E(x^2)= [(13.5)^2(0.17)+(15.9)^2(0.57)+(19.1)^2(0.26)]\\E(x^2)= 269.94[/tex]
V(X)
[tex]V(X)=E(X^2)-(E(X))^2\\V(X)=3.46[/tex]
So the value of E(X) is 16.33, E(X^2) is 269.94 and value of V(X) is 3.46.
Part b:
Expected price is given as
[tex]E(28X-8.5)=E(28X)-8.5\\E(28X-8.5)=28E(X)-8.5\\E(28X-8.5)=28(16.33)-8.5\\E(28X-8.5)=\$448.74[/tex]
So the expected price of a freezer of capacity X is $448.74.
Part c:
Variance is given as
[tex]V(28X-8.5)=V(28X)\\V(28X-8.5)=28^2V(X)\\V(28X-8.5)=28^2(3.46)\\V(28X-8.5)=\$2496[/tex]
So the variance of the price of a freezer of capacity X is $2496.
Part d:
The expected actual capacity is given as
[tex]h(X)=X-0.02X^2\\E(h(X))=E(X-0.02X^2)\\E(h(X))=E(X)-E(0.02X^2)\\E(h(X))=E(X)-0.02E(X^2)\\E(h(X))=16.33-0.02(269.94)\\E(h(X))=10.93[/tex]
So the expected actual capacity of the freezer is 10.93