A 5,000 kg satellite is orbiting the Earth in a circular path. The height of the satellite above the surface of the Earth is 800 km. The speed of the satellite is (ME = 5.98 × 1024 kg, RE = 6.37 × 106 m, G = 6.67 × 10−11 N·m2/kg2)

Respuesta :

Explanation:

The given data is as follows.

            m = 5000 kg,            h = 800 km = [tex]0.8 \times 10^{6} m[/tex]

    [tex]R_{e} = 6.37 \times 10^{6} m[/tex],    r = R + h = [tex]7.17 \times 10^{6} m[/tex]

   [tex]M_{e} = 5.98 \times 10^{24}[/tex] kg,   G = [tex]6.67 \times 10^{-11} Nm^{2}/kg^{2}[/tex]

As we know that,

              [tex]\frac{mv^{2}}{r} = \frac{GmM_{e}}{r^{2}}[/tex]

                      v = [tex]\sqrt{\frac{GM_{e}}{r^{2}}}[/tex]

And, it is known that formula to calculate angular velocity is as follows.

               [tex]\omega = \frac{v}{r} = \sqrt{\frac{GM_{e}}{r^{3}}}[/tex]

                            v = [tex]\sqrt{\frac{GM_{e}}{r^{3}}}[/tex]

                               = [tex]\sqrt{\frac{6.67 \times 10^{-11} Nm^{2}/kg^{2} \times 5.98 \times 10^{-24} kg^{-2}}{(7.17 \times 10^{6} m)^{3}}}[/tex]

                                = [tex]1.0402 \times 10^{-3} rad/s[/tex]

Thus, we can conclude that speed of the satellite is [tex]1.0402 \times 10^{-3} rad/s[/tex].

ACCESS MORE