Explanation:
The given data is as follows.
m = 5000 kg, h = 800 km = [tex]0.8 \times 10^{6} m[/tex]
[tex]R_{e} = 6.37 \times 10^{6} m[/tex], r = R + h = [tex]7.17 \times 10^{6} m[/tex]
[tex]M_{e} = 5.98 \times 10^{24}[/tex] kg, G = [tex]6.67 \times 10^{-11} Nm^{2}/kg^{2}[/tex]
As we know that,
[tex]\frac{mv^{2}}{r} = \frac{GmM_{e}}{r^{2}}[/tex]
v = [tex]\sqrt{\frac{GM_{e}}{r^{2}}}[/tex]
And, it is known that formula to calculate angular velocity is as follows.
[tex]\omega = \frac{v}{r} = \sqrt{\frac{GM_{e}}{r^{3}}}[/tex]
v = [tex]\sqrt{\frac{GM_{e}}{r^{3}}}[/tex]
= [tex]\sqrt{\frac{6.67 \times 10^{-11} Nm^{2}/kg^{2} \times 5.98 \times 10^{-24} kg^{-2}}{(7.17 \times 10^{6} m)^{3}}}[/tex]
= [tex]1.0402 \times 10^{-3} rad/s[/tex]
Thus, we can conclude that speed of the satellite is [tex]1.0402 \times 10^{-3} rad/s[/tex].