Answer:
Step-by-step explanation:
From the information we find that
Q'(t) = kQ(t)
with Q(0) = 5 and Q(6) = 2.5 in millions
A) Separate the variables and solve the DE
[tex]\frac{dQ}{Q} =kdt\\ln Q = kt+C\\Q = Ae^{kt}[/tex]
Using Q(0) = 5
A =5
B) [tex]Q = 5e^{kt}[/tex]
C)
Using Q(6) = 2.5
[tex]2.5 =5e^{6k} \\ln 0.5 = 5k\\k=-0.1155[/tex]
D) Use Q'(t) = -0.1155 (3) = -0.3465
Rate = -346500 barrels
(negative indicates decrease in number of barrels_
E) When Q = 250000 we have
[tex]0.25 = 5e^{-0.1155t} \\-0.1155 t = -2.996\\t = 25.93[/tex]
After 26 years