Using a forked rod, a 0.5-kg smooth peg P is forced to move along the vertical slotted path r = (0.5 θ) m, whereθ is in radians. The angular position of the arm isθ = (π8t2) rad where t is in seconds. The peg is in contact with only one edge of the rod and slot at any instant. (Figure 1)

Part A

Determine the magnitude of the force of the rod on the peg at the instant t = 2 s.

Express your answer to three significant figures and include the appropriate units.

F =
Part B

Determine the magnitude of the normal force of the slot on the peg.

Express your answer to three significant figures and include the appropriate units.

N =

Respuesta :

Answer:

N_c = 3.03 N

F = 1.81 N

Explanation:

Given:

- The attachment missing from the question is given:

- The given expressions for the radial and θ direction of motion:

                                       r = 0.5*θ

                                       θ = 0.5*t^2              ...... (correction for the question)

- Mass of peg m = 0.5 kg

Find:

a) Determine the magnitude of the force of the rod on the peg at the instant t = 2 s.

b) Determine the magnitude of the normal force of the slot on the peg.

Solution:

- Determine the expressions for radial kinematics:

                                        dr/dt = 0.5*dθ/dt

                                        d^2r/dt^2 = 0.5*d^2θ/dt^2

- Similarly the expressions for θ direction kinematics:

                                        dθ/dt = t

                                        d^2θ/dt^2 = 1

- Evaluate each at time t = 2 s.

                                        θ = 0.5*t^2 = 0.5*2^2 = 2 rad -----> 114.59°

                                        r = 1 m , dr / dt = 1 m/s , d^2 r / dt^2 = 0.5 m/s^2

- Evaluate the angle ψ between radial and horizontal direction:

                                        tan Ψ = r / (dr/dθ) = 1 / 0.5

                                        Ψ = 63.43°

- Develop a free body diagram (attached) and the compute the radial and θ acceleration:

                                        a_r = d^2r / dt^2 - r * dθ/dt

                                        a_r = 0.5 - 1*(2)^2 = -3.5 m/s^2

                                        a_θ =  r * (d^2θ/dt^2) + 2 * (dr/dt) * (dθ/dt)

                                        a_θ = 1(1) + 2*(1)*(2) = 5 m/s^2

- Using Newton's Second Law of motion to construct equations in both radial and θ directions as follows:

Radial direction:              N_c * cos(26.57) - W*cos(24.59) = m*a_r

θ direction:                      F  - N_c * sin(26.57) + W*sin(24.59) = m*a_θ

Where, F is the force on the peg by rod and N_c is the normal force on peg by the slot. W is the weight of the peg. Using radial equation:

                                       N_c * cos(26.57) - 4.905*cos(24.59) = 0.5*-3.5

                                       N_c = 3.03 N

                                       F  - 3.03 * sin(26.57) + 4.905*sin(24.59) = 0.5*5

                                       F = 1.81 N

Ver imagen shahnoorazhar3
Ver imagen shahnoorazhar3

A) The magnitude of the force of the rod on the peg at the instant t = 2 s is; F = 4.21 N

B) The magnitude of the normal force of the slot on the peg is; N = 4.90 N

We are given;

r = 0.5 θ

dr/dθ = 0.5

θ = (π/8)t²

Now The angle ψ between the extended radial line and the tangent can be gotten from;

tan ψ = r/(dr/dθ)

tan ψ = 0.5 θ/(0.5)

tan ψ = θ

A) At t = 2 s, θ = (π/8)2² = π/2 rad

Since tan ψ = θ, then we have;

tan ψ = π/2

Thus; ψ = tan⁻¹(π/2)

ψ = 57.52°

From the image of the peg attached, the free body diagram of the peg will mean that;

ΣF_r = ma_r; Nsinψ - mg = ma_r

Nsin57.2° - (0.5*9.81) = 0.5a_r  ---(eq 1)

ΣF_θ = ma_θ; F - Ncos ψ = ma_θ

F - Ncos 57.2° = 0.5a_θ ---(eq 2)

Since, r = 0.5 θ and θ = (π/8)t², let us use chain rule to find the first and second derivatives of r and θ with respect to t. Thus;

r = 0.5((π/8)t²

r = ¹/₁₆πt²

dr/dt = ¹/₈πt

d²r/dt = ¹/₈π

Similarly;

θ = (π/8)t²

dθ/dt = ¹/₄πt

d²θ/dt = ¹/₄π

When t = 2;

r = ¹/₁₆π(2²) = ¹/₄π m

dr/dt = ¹/₈π(2) = ¹/₄π m/s

d²r/dt = ¹/₈π m/s²

θ = (π/8)(2²) = ¹/₂π rad

dθ/dt = ¹/₄π(2) = ¹/₂π rad/s

d²θ/dt = ¹/₄π rad/s²

Thus;

a_r = d²r/dt - r(dθ/dt)²

a_r = ¹/₈π - ¹/₄π(¹/₂π)²

a_r = -1.5452 m/s²

a_θ = r(d²θ/dt) + 2r(dr/dt)(dθ/dt )

a_θ = ¹/₄π(¹/₄π) + 2(¹/₄π)(¹/₄π)(¹/₂π)

a_θ = 3.0843 m/s²

Plugging in the relevant values into eq 1 and eq 2 gives;

Nsin57.2° - (0.5*9.81) = 0.5(-1.5452)  ---(eq 1a)

F - Ncos 57.2° = 0.5(3.0843) ---(eq 2a)

0.8406N - 4.905 = -0.7726

N = 4.92 N

F - Ncos 57.2° = 0.5(3.0843)

F - 0.5417*4.92 = 1.5422

F = 4.21 N

Read more at; https://brainly.com/question/25737794

Ver imagen AFOKE88
ACCESS MORE