-2.25, -1.25, 0.75, 1.25, 1.75, 2.25
Solution:
We have to order from least to greatest
Given are:
[tex]-2\frac{1}{4}\\\\\frac{3}{4}\\\\|-2\frac{1}{4}|\\\\|1\frac{1}{4}|\\\\|-1\frac{3}{4}|\\\\-1\frac{1}{4}[/tex]
Absolute value means magnitude of a quantity without regard to sign
Therefore, convert them into decimal for easier comparisons
[tex]\rightarrow -2\frac{1}{4} = -\frac{4 \times 2+1}{4} = -\frac{9}{4} = -2.25[/tex]
[tex]\rightarrow \frac{3}{4} = 0.75[/tex]
[tex]\rightarrow |-2\frac{1}{4}| = 2\frac{1}{4} = \frac{9}{4} = 2.25[/tex]
[tex]\rightarrow |1\frac{1}{4}| = 1\frac{1}{4} = \frac{5}{4} = 1.25[/tex]
[tex]\rightarrow |-1\frac{3}{4}| = 1\frac{3}{4} = \frac{7}{4} = 1.75[/tex]
[tex]\rightarrow -1 \frac{1}{4} = -\frac{5}{4} = -1.25[/tex]
Arrange them from least to greatest
-2.25 is the most negative and so it is the smallest
-2.25, -1.25, 0.75, 1.25, 1.75, 2.25
Thus the ascending order is found