Answer:
(a) [tex]k=311.8N/m[/tex]
(b) [tex]W=1.501*10^{-6}J[/tex]
Explanation:
For Part (a)
Solving for spring constant k
[tex]k=\frac{YA}{L_{o} } \\k=\frac{Y(\pi r^{2} )}{L_{o} }\\k=\frac{(3.10*10^{6} N/m^{2} )(\pi (0.093*10^{-2}m )^{2} )}{2.7*10^{-2}m }\\k=311.8N/m[/tex]
For Part (b)
Solving for work is done
[tex]x=\frac{F}{k}\\ x=\frac{3.06*10^{-2}N }{311.8N/m}\\x=9.814*10^{-5}m[/tex]
The Work done is given as:
[tex]W=\frac{1}{2}Fx\\ W=\frac{1}{2}(3.06*10^{-2}N )(9.814*10^{-5}m )\\W=1.501*10^{-6}J[/tex]