A 1350 kg uniform boom is supported by a cable. The length of the boom is l. The cable is connected 1/4 the
way from the top of the boom. The boom is pivoted at the bottom, and a 2250 kg mass hangs from its top. The
angle between the ground and the boom is 55°. Find the tension in the cable and the components of the
Normal force on the boom by the floor.

Respuesta :

Answer:

Tension= 21,900N

Components of Normal force

Fnx= 17900N

Fny= 22700N

FN= 28900N

Explanation:

Tension in the cable is calculated by:

Etorque= -FBcostheta(1/2L)+FT(3/4L)-FWcostheta(L)= I&=0 static equilibrium

FTorque(3/4L)= FBcostheta(1/2L)+ FWcostheta(L)

Ftorque=(Fcostheta(1/2L)+FWcosL)/(3/4L)

Ftorque= 2/3FBcostheta+ 4/3FWcostheta

Ftorque=2/3(1350)(9.81)cos55° + 2/3(2250)(9.81)cos 55°

Ftorque= 21900N

b) components of Normal force

Efx=FNx-FTcos(90-theta)=0 static equilibrium

Fnx=21900cos(90-55)=17900N

Fy=FNy+ FTsin(90-theta)-FB-FW=0

FNy= -FTsin(90-55)+FB+FW

FNy= -21900sin(35)+(1350+2250)×9.81=22700N

The Normal force

FN=sqrt(17900^2+22700^2)

FN= 28.900N

Answer:

Answer:

Tension= 21,900N

Components of Normal force

Fnx= 17900N

Fny= 22700N

FN= 28900N

Explanation:

Tension in the cable is calculated by:

Etorque= -FBcostheta(1/2L)+FT(3/4L)-FWcostheta(L)= I&=0 static equilibrium

FTorque(3/4L)= FBcostheta(1/2L)+ FWcostheta(L)

Ftorque=(Fcostheta(1/2L)+FWcosL)/(3/4L)

Ftorque= 2/3FBcostheta+ 4/3FWcostheta

Ftorque=2/3(1350)(9.81)cos55° + 2/3(2250)(9.81)cos 55°

Ftorque= 21900N

b) components of Normal force

Efx=FNx-FTcos(90-theta)=0 static equilibrium

Fnx=21900cos(90-55)=17900N

Fy=FNy+ FTsin(90-theta)-FB-FW=0

FNy= -FTsin(90-55)+FB+FW

FNy= -21900sin(35)+(1350+2250)×9.81=22700N

The Normal force

FN=sqrt(17900^2+22700^2)

FN= 28.900N

Explanation:

ACCESS MORE