Answer:
Part A [tex]F = 14[/tex] Newton
Part B [tex]W = 1.4[/tex] Joules
Part C [tex]m_B = 15 Kg[/tex]
Part D
[tex]v_ A = 0.22\\v_B= 0.66[/tex]
Explanation:
Part A
Force in a spring is equal to the product of spring constant and displacement
Thus,
[tex]F = kx\\F = 70 * 0.2\\[/tex]
[tex]F = 14[/tex] Newton
Part B
Work done to compress the spring
[tex]\frac{1}{2} kx^2\\= 0.5 * 0.7 * 0.2 * 0.2\\= 1.4 J[/tex]
Part C
Given that velocity of cart A becomes three time the velocity of cart B
As per the conservation of momentum equation
[tex]m_Av_A = m_Bv_B\\m_A * 3v_B= m_B* v_B\\m_B = m_A * 3\\m_B = 5 * 3\\m_B = 15[/tex]
Part D
[tex]\frac{1}{2} kx^2\\= \frac{1}{2 m_Av_A^2 + \frac{1}{2 m_Bv_B^2\\[/tex]
Substituting the given values we get
[tex]1.4 = 0.5 * 5 * 3v_B^2 + 0.5 * 15 * v_B^2\\v_B^2 = \frac{1.4}{30} \\v_B = 0.22\\v_A = 3 * v_B\\v_A = 3* 0.22\\v_A = 0.66[/tex]