Answer:
[tex] tan \theta = \frac{(176ft/s)^2}{1000 ft 32.2 ft/s^2}= 0.962[/tex]
[tex] \theta = tan^{-1} (0.962) = 43.89[/tex]
Explanation:
If the question is: Determine the banking angle θ
We have the forces involved on the figure attached.
For this case we know that the weight is given by:
[tex] W = mg [/tex]
And for this case the centripetal acceleration would be given by:
[tex] a=\frac{v^2}{r}[/tex]
If we analyze the sum of forces on x and y we have:
[tex] \sum F_x = m a_x [/tex]
[tex] F + W sin \theta = ma cos theta[/tex]
And if we solve for the force we got:
[tex] F = ma cos \theta - mg sin \theta = \frac{mv^2}{r} cos \theta - mg sin \theta[/tex]
[tex] \sum F_y = m a_y[/tex]
[tex] N - W cos \theta = ma sin \theta[/tex]
If we solve for the normal force we got:
[tex] N =W cos \theta + ma sin \theta = \frac{mv^2}{r} sin \theta + mg cos \theta[/tex]
In order to find the banking angle we use the fact that F =0
[tex] 0 = \frac{mv^2}{r} cos \theta - mg sin \theta[/tex]
[tex] tan \theta= \frac{v^2}{rg}[/tex]
The velocity on this case is 120 mi/h if we convert this into ft/ s we got:
[tex] 120 mi/h * \frac{5280 ft}{1mi} *\frac{1hr}{3600 s}= 176 ft/s[/tex]
And then we have this:
[tex] tan \theta = \frac{(176ft/s)^2}{1000 ft 32.2 ft/s^2}= 0.962[/tex]
[tex] \theta = tan^{-1} (0.962) = 43.89[/tex]