Two quadratic functions are shown.

Function 1:



f(x) = 4x2 + 8x + 1





Function 2:
x g(x)
−2 2
−1 0
0 2
1 8

Which function has the least minimum value and what are its coordinates

Respuesta :

Function 1 written in vertex form is 4(x + 1)^2 - 3 meaning that the vertex is (-1, -3)
Function 2 has a vertex of (-1, 0)
Therefore, function 1 has the least minimum value with cordinates (-1, -3)

Answer:

The least minimum value is attained by:

First function---- f(x)

Coordinate of the point: (-1,-3)

Step-by-step explanation:

We are given a equation of first function as:

[tex]f(x)=4x^2+8x+1[/tex]

The graph of this function is a parabola which is open upward and the vertex of the parabola is at (-1,-3)

Since, the parabola is open upward hence the vertex of the parabola is the point of minima of the parabola.

                 The minimum value of the function f(x) is:

                                   -3

Now we are given a table of values of the second  function i.e. g(x) as:

                          x    g(x)

                        −2     2

                        −1     0

                         0     2

                         1      8

Clearly by looking at the values we see that:

      The minimum value attained by the function g(x) is:

                                         0

The least minimum value is attained by:

First function--- f(x)

The coordinates of the minimum point are:  (-1,-3)

RELAXING NOICE
Relax