The simplest polynomial function with the given roots is
[tex]x^4-x^3-19x^2-11x+30[/tex].
Solution:
Given roots of the polynomial are:
–3, –2, 1 and 5
If a is the root of the polynomial then the factor is (x –a).
So that, the factors of the given roots are:
(x –(–3)) = x + 3
(x –(–2)) = x + 2
(x – 1) = x – 1
(x – 5) = x –5
Polynomial = Product of the factors
= (x + 3)(x + 2)(x – 1)(x – 5)
Multiply first two factors.
[tex]=(x^2+2x+3x+6)(x-1)(x-5)[/tex]
[tex]=(x^2+5x+6)(x-1)(x-5)[/tex]
Now, multiply the next two factors.
[tex]=(x^2+5x+6)(x^2-5x-x+5)[/tex]
[tex]=(x^2+5x+6)(x^2-6x+5)[/tex]
Now multiply these two factors.
[tex]=x^2(x^2-6x+5)+5x(x^2-6x+5)+6(x^2-6x+5)[/tex]
[tex]=x^4-6x^3+5x^2+5x^3-30x^2+25x+6x^2-36x+30[/tex]
[tex]=x^4-x^3-19x^2-11x+30[/tex]
The simplest polynomial function with the given roots is
[tex]x^4-x^3-19x^2-11x+30[/tex].