Respuesta :

The equation of a line that is perpendicular to the given line is y = –4x – 16.

Solution:

The equation of a line given is y = 0.25x – 7

Slope of the given line([tex]m_1[/tex]) = 0.25

Let [tex]m_2[/tex] be the slope of the perpendicular line.

Passes through the point (–6, 8).

If two lines are perpendicular then the product of the slopes equal to –1.

[tex]\Rightarrow m_1 \cdot m_2=-1[/tex]

[tex]\Rightarrow 0.25\cdot m_2=-1[/tex]

[tex]\Rightarrow m_2=\frac{-1}{0.25}[/tex]

[tex]\Rightarrow m_2=-4[/tex]

Point-slope intercept formula:

[tex]y-y_1=m(x-x_1)[/tex]

[tex]x_1=-6, y_1=8[/tex] and [tex]m=-4[/tex]

Substitute these in the formula, we get

[tex]y-8=-4(x-(-6))[/tex]

[tex]y-8=-4(x+6)[/tex]

[tex]y-8=-4x-24[/tex]

Add 8 on both sides of the equation.

[tex]y-8+8=-4x-24+8[/tex]

[tex]y=-4x-16[/tex]

Hence the equation of a line that is perpendicular to the given line is

y = –4x – 16

ACCESS MORE